Md.Kausher ahmed Electrical department. Advanced electricity Code-6722.

Slides:



Advertisements
Similar presentations
Energy stored in Magnetic Fields
Advertisements

Chapter 11 – Magnetic Circuits
PHY 042: Electricity and Magnetism Magnetic field in Matter Prof. Hugo Beauchemin 1.
AP Physics C Montwood High School R. Casao
1 Maxwell’s Equations in Materials Electric field in dielectrics and conductors Magnetic field in materials Maxwell’s equations in its general form Boundary.
Chapter 27 Sources of the magnetic field
Electromagnetics (ENGR 367) Magnetic Materials & Magnetization.
PHY 042: Electricity and Magnetism Electric field in Matter Prof. Hugo Beauchemin 1.
The relation between the induced charge density σ p and the polarisation, P is Where is a unit vector along the outward normal to the surface. P is along.
Physics 1502: Lecture 17 Today’s Agenda Announcements: –Midterm 1 distributed today Homework 05 due FridayHomework 05 due Friday Magnetism.
III–5 Magnetic Properties of Materials.
DEPARTMENT OF PHYSICS AND ASTRONOMY PA113/Unit 3 Electricity and Magnetism Course PA113 – Unit 3.
Chapter 23 Summer 1996, Near the University of Arizona Chapter 23 Electric Fields.
Chapter 3. Transport Equations The plasma flows in planetary ionospheres can be in equilibrium (d/dt = 0), like the midlatitude terrestrial ionosphere,
3-6. Conductors in Static Electric Field
EEE340Lecture : Magnetic Dipole A circular current loop of radius b, carrying current I makes a magnetic dipole. For R>>b, the magnetic vector potential.
Physics 121: Electricity & Magnetism – Lecture 12 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Maxwell’s Equations; Magnetism of Matter
Copyright © Cengage Learning. All rights reserved. 15 Multiple Integrals.
Magnetism in Matter Electric polarisation (P) - electric dipole moment per unit vol. Magnetic ‘polarisation’ (M) - magnetic dipole moment per unit vol.
ET 332a Dc Motors, Generators and Energy Conversion Devices Lesson 2: Magnetic Circuits- Quantities and Definitions 1.
Md.Kausher ahmed Electrical department. Advanced electricity Code-6722.
CHAPTER-4 MAGNETISM.
Md.Kausher ahmed Electrical department. Advanced electricity Code-6722.
Center of Mass and Moments of Inertia
Md.Kausher ahmed Electrical department. Advanced electricity Code-6722.
5. Magnetostatics Applied EM by Ulaby, Michielssen and Ravaioli.
Chapter-6 : Magnetic Fields in Matter
Magnetic Forces, Materials and Devices INEL 4151 ch 8 Dr. Sandra Cruz-Pol Electrical and Computer Engineering Dept. UPRM
ELECTROMAGNETIC THEORY EKT 241/4: ELECTROMAGNETIC THEORY PREPARED BY: NORDIANA MOHAMAD SAAID CHAPTER 4 – MAGNETOSTATICS.
1 Expression for curl by applying Ampere’s Circuital Law might be too lengthy to derive, but it can be described as: The expression is also called the.
1 Electric Field – Continuous Charge Distribution As the average separation between source charges is smaller than the distance between the charges and.
Coulomb´s Law & Gauss´s Law
EEL 3472 Magnetostatics 1. If charges are moving with constant velocity, a static magnetic (or magnetostatic) field is produced. Thus, magnetostatic fields.
1 ENE 325 Electromagnetic Fields and Waves Lecture 8 Scalar and Vector Magnetic Potentials, Magnetic Force, Torque, Magnetic Material, and Permeability.
Magnetism in Matter Electric polarisation (P) - electric dipole moment per unit vol. Magnetic ‘polarisation’ (M) - magnetic dipole moment per unit vol.
Lecture-6. Md.Kausher ahmed Electrical department.
CHAPTER 2 MAGNETIC MATERIALS AND CIRCUITS
VI. Electromagnetic Waves All the important physics in electromagnetism can be expressed in four Maxwell’s Equations, the Lorentz force and.
Electromagnetism Zhu Jiongming Department of Physics Shanghai Teachers University.
6. Magnetic Fields in Matter Matter becomes magnetized in a B field. Induced dipoles: Diamagnets Permanent dipoles : Paramagnets Ferromagnets.
Lecture-5. Md.Kausher ahmed Electrical department.
Electric Field-Intro Electric force is a field force. Field forces can act through space, i.e. requires no physical contact. Faraday developed the concept.
1 MAGNETOSTATIC FIELD (MAGNETIC FORCE, MAGNETIC MATERIAL AND INDUCTANCE) CHAPTER FORCE ON A MOVING POINT CHARGE 8.2 FORCE ON A FILAMENTARY CURRENT.
Sources of Magnetic Fields
Waves from the Sun Electromagnetic Wave Electric field – The electric field E at a point is defined as the force per unit charge experienced by a small.
4. Electric Fields in Matter
Lecture 18 Chapter 32 Outline Gauss Law for Mag Field Maxwell extension of Ampere’s Law Displacement Current Spin/ Orbital Mag Dipole Moment Magnetic Properties.
O Aim of the lecture  Calculation of Magnetic Fields Biot-Savart Law Magnetic field, B  Ampres Law B field Case of static E field o Main learning outcomes.
Electricity and Magnetism
Chapter 6 Magnetostatic Fields in Matter 6.1 Magnetization 6.2 The Field of a Magnetized Object 6.3 The Auxiliary Field 6.4 Linear and Nonlinear Media.
Chapter 35 Magnetic Properties of Materials. E0E0 qq q E0E0 To describe this weakness of the electric field in an insulator, with “dielectric constant”
ENE 325 Electromagnetic Fields and Waves
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 20 ECE 3318 Applied Electricity and Magnetism 1.
Lecture 8 1 Ampere’s Law in Magnetic Media Ampere’s law in differential form in free space: Ampere’s law in differential form in free space: Ampere’s law.
P212c28: 1 Chapter 28: Sources of Magnetic Field Sources are moving electric charges single charged particle:
Introduction to Magnetic Exploration  Often cheap relative to other geophysical techniques.  Can be measured with ground-based or airborne equipment.
UPB / ETTI O.DROSU Electrical Engineering 2
Generation of Magnetic Field
Fundamentals of Applied Electromagnetics
The Electric Field Due to continuous Charges
Electromagnetic Theory
© 2011 Cengage Learning Engineering. All Rights Reserved.
ENE/EIE 325 Electromagnetic Fields and Waves
Christopher Crawford PHY
Lecture 19 Maxwell equations E: electric field intensity
Static Magnetic Field Section 29.
Notes: problem with illustrating gauss’ law and polarization divergence is that this is valid for continuous functions, and we cant illustrate that well.
Maxwell’s equations.
Maxwell’s equations continued
Presentation transcript:

Md.Kausher ahmed Electrical department

Advanced electricity Code-6722

Lesson declared Magnetization

Learning outcomes After finished this lesson student will able to # Say Magnetization. #Draw Magnetization curve. # Explain Magnetization Equation.

Magnetization The magnetization field or M-field can be defined according to the following equation: Where dm is the elementary magnetic moment and dV is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned. This is better illustrated through the following relation:

Continue,,,,,,,,,, where m is an ordinary magnetic moment and the triple integral denotes integration over a volume. This makes the M-field completely analogous to the electric polarisation field, or P- field, used to determine the electric dipole moment p generated by a similar region or manifold with such a polarization

Continue,,,,,,,,,, Where dp is the elementary electric dipole moment.

Fig:Magnetization

Maxwell's equations The behavior of magnetic fields (B, H), electric fields (E, D), charge density (ρ), and current density (J) is described by Maxwell's equations. The role of the magnetization is described below.

Continue,,,,,,,,,, Relations between B, H, and M The magnetization defines the auxiliary magnetic field H as (SI units) (Gaussian units)

Continue,,,,,,,,,, which is convenient for various calculations. The vacuum permeability μ 0 is, by definition, 4π×10 −7 V·s/(A·m). A relation between M and H exists in many materials. In diamagnets and paramagnets, the relation is usually linear:

Continue,,,,,,,,,, where χ m is called the volume magnetic susceptibility. In ferromagnets there is no one-to-one correspondence between M and H because of Magnetic hysteresis.

Magnetization current The magnetization M makes a contribution to the current density J, known as the magnetization current or bound (volumetric) current. and for the bound surface current:

Continue,,,,,,,,,, so that the total current density that enters Maxwell's equations is given by where J f is the electric current density of free charges (also called the free current), the second term is the contribution from the magnetization, and the last term is related to the electric polarization P.

Feedback #What is star connection? #What is Inductors in Series Equation. # What is Inductors in Series connection

Thanks everybody