Bern, MHD, and shear Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg  Calgary) Tarek.

Slides:



Advertisements
Similar presentations
The solar dynamo(s) Fausto Cattaneo Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas Chicago 2003.
Advertisements

Outline Dynamo: theoretical General considerations and plans Progress report Dynamo action associated with astrophysical jets Progress report Dynamo: experiment.
Non-Fickian diffusion and Minimal Tau Approximation from numerical turbulence A.Brandenburg 1, P. Käpylä 2,3, A. Mohammed 4 1 Nordita, Copenhagen, Denmark.
2011/08/ ILWS Science Workshop1 Solar cycle prediction using dynamos and its implication for the solar cycle Jie Jiang National Astronomical Observatories,
“The interaction of a giant planet with a disc with MHD turbulence II: The interaction of the planet with the disc” Papaloizou & Nelson 2003, MNRAS 339.
Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg)
“Physics at the End of the Galactic Cosmic-Ray Spectrum” Aspen, CO 4/28/05 Diffusive Shock Acceleration of High-Energy Cosmic Rays The origin of the very-highest-energy.
1. 2 Apologies from Ed and Karl-Heinz
Does hyperviscosity spoil the inertial range? A. Brandenburg, N. E. L. Haugen Phys. Rev. E astro-ph/
Coronal Mass Ejections - the exhaust of modern dynamos Examples: systematic swirl (helicity) Measuring it quantitatively Connection with the dynamo Axel.
Simulation of Flux Emergence from the Convection Zone Fang Fang 1, Ward Manchester IV 1, William Abbett 2 and Bart van der Holst 1 1 Department of Atmospheric,
Influence of depth-dependent diffusivity profiles in governing the evolution of weak, large-scale magnetic fields of the sun Night Song and E.J. Zita,
On the Cause of Solar Differential Rotation Ling-Hsiao Lyu Institute of Space Science, National Central University 呂凌霄 中央大學太空科學研究所 太陽差動自轉的成因.
1 Forced – decaying Helical – nonhelical. 2 Points of the talk Resistive effects during inverse transfer B-field does not care about irrotational part.
The Pencil Code -- a high order MPI code for MHD turbulence Anders Johansen (Sterrewacht Leiden)‏ Axel Brandenburg (NORDITA, Stockholm)‏ Wolfgang Dobler.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Magneto-hydrodynamic turbulence: from the ISM to discs
Sunspots: the interface between dynamos and the theory of stellar atmospheres Axel Brandenburg (Nordita/Stockholm) 70 yr Guenther.
Magnetic field generation on long time scales Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Magnetic dynamo over different astrophysical scales Axel Brandenburg & Fabio Del Sordo (Nordita) with contributions from many others seed field primordial.
Critical issues to get right about stellar dynamos Axel Brandenburg (Nordita, Copenhagen) Shukurov et al. (2006, A&A 448, L33) Schekochihin et al. (2005,
Effect of Magnetic Helicity on Non-Helical Turbulent Dynamos N. KLEEORIN and I. ROGACHEVSKII Ben-Gurion University of the Negev, Beer Sheva, ISRAEL.
Magneto-rotational instability Axel Brandenburg (Nordita, Copenhagen)
Supergranulation Waves in the Subsurface Shear Layer Cristina Green Alexander Kosovichev Stanford University.
High-performance multi-user code development with Google Code  Current status  (...just google for Pencil Code)
Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008.
Accretion disc dynamos B. von Rekowski, A. Brandenburg, 2004, A&A 420, B. von Rekowski, A. Brandenburg, W. Dobler, A. Shukurov, 2003 A&A 398,
1 This is how it looks like… Magnetic helicity at the solar surface and in the solar wind Axel Brandenburg (Nordita, Stockholm) Properties of magn helicity.
Solar activity as a surface phenomenon Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Dynamo theory and magneto-rotational instability Axel Brandenburg (Nordita) seed field primordial (decay) diagnostic interest (CMB) AGN outflows MRI driven.
Large Scale Dynamo Action in MRI Disks Role of stratification Dynamo cycles Mean-field interpretation Incoherent alpha-shear dynamo Axel Brandenburg (Nordita,
Direct simulation of planetary and stellar dynamos II. Future challenges (maintenance of differential rotation) Gary A Glatzmaier University of California,
Catastrophic  -quenching alleviated by helicity flux and shear Axel Brandenburg (Nordita, Copenhagen) Christer Sandin (Uppsala) Collaborators: Eric G.
Astrophysical Magnetism Axel Brandenburg (Nordita, Stockholm)
Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear.
3D Spherical Shell Simulations of Rising Flux Tubes in the Solar Convective Envelope Yuhong Fan (HAO/NCAR) High Altitude Observatory (HAO) – National Center.
Double diffusive mixing (thermohaline convection) 1. Semiconvection ( ⇋ diffusive convection) 2. saltfingering ( ⇋ thermohaline mixing) coincidences make.
The Solar Dynamo NSO Solar Physics Summer School Tamara Rogers, HAO June 15, 2007.
Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg)
Simulations of Core Convection and Dynamo Activity in A-type Stars Matthew Browning Sacha Brun Juri Toomre JILA, Univ Colorado, and CEA-Saclay.
Numerical simulations of the SN driven ISM Axel Brandenburg (NORDITA, Copenhagen, Denmark) Boris Gudiksen (Stockholm Observatory, Sweden) Graeme Sarson.
High-order codes for astrophysical turbulence
Self-assembly of shallow magnetic spots through strongly stratified turbulence Axel Brandenburg (Nordita/Stockholm) Kemel+12 Brandenburg+13 Warnecke+11.
1 This is how it looks like… The solar dynamo and its spots Axel Brandenburg (Nordita, Stockholm) Solar & stellar dynamos: differences? Magnetic helicity:
Simple Radiative Transfer in Decomposed Domains Tobi Heinemann Åke Nordlund Axel Brandenburg Wolfgang Dobler.
Self-organized magnetic structures in computational astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+13Warnecke+11 Käpylä+12.
Dynamo action in shear flow turbulence Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg.
The solar dynamo Axel Brandenburg. 2 Importance of solar activity.
Prograde patterns in rotating convection and implications for the dynamo Axel Brandenburg (Nordita, Copenhagen  Stockholm) Taylor-Proudman problem Near-surface.
Gary A Glatzmaier University of California, Santa Cruz Direct simulation of planetary and stellar dynamos I. Methods and results.
Turbulent transport coefficients from numerical experiments Axel Brandenburg & Matthias Rheinhardt (Nordita, Stockholm) Extracting concepts from grand.
ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE Gordon Ogilvie University of Cambridge TACHOCLINE DYNAMICS
Turbulence research at Nordita 1.Bottleneck effect 2.Magnetic fields (active vector) 3.Passive scalar diffusion Haugen & Brandenburg (2006, Phys. Fl. 18,
Prandtl number dependence of magnetic-to-kinetic dissipation 1.What gets in, will get out 2.Even for vanishing viscosity 3.What if magnetic fields 4. contribute?
H. Isobe Plasma seminar 2004/06/16 1. Explaining the latitudinal distribution of sunspots with deep meridional flow D. Nandy and A.R. Choudhhuri 2002,
Pencil Code: multi-purpose and multi-user maintained Axel Brandenburg (Nordita, Stockholm) Wolfgang Dobler (Univ. Calgary) and now many more…. (...just.
Axel Brandenburg & Jörn Warnecke NorditaStockholm  loop emergence –Buoyant rise –Many scale heights –Twist needed Dynamo –bi-helical field Emergence.
Turbulence & dynamos Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
THE DYNAMIC EVOLUTION OF TWISTED MAGNETIC FLUX TUBES IN A THREE-DIMENSIONALCONVECTING FLOW. II. TURBULENT PUMPING AND THE COHESION OF Ω-LOOPS.
Physical conditions in astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Overview of dynamos in stars and galaxies
Is solar activity a surface phenomenon?
THEORY OF MERIDIONAL FLOW AND DIFFERENTIAL ROTATION
Paradigm shifts in solar dynamo modelling
From the Convection Zone to the Heliosphere
Dynamo action & MHD turbulence (in the ISM, hopefully…)
Introduction to Space Weather
Large scale simulations of astrophysical turbulence
Energy spectra of small scale dynamos with large Reynolds numbers
Catastrophic a-quenching alleviated by helicity flux and shear
Presentation transcript:

Bern, MHD, and shear Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg  Calgary) Tarek Yousef (Univ. Trondheim) Antony Mee (Univ. Newcastle) Ideal vs non-ideal simulations Pencil code Application to the sun Near-surface shear layer

2 (i) Can we trust ideal hydro? Porter, Pouquet, Woodward (1998, Phys. Fluids, 10, 237) Majority of public astrophysics codes are “inviscid”

3 Direct vs hyper at With hyperdiffusivity Normal diffusivity Biskamp & Müller (2000, Phys Fluids 7, 4889)

4 Ideal hydro: should we be worried? Why this k -1 tail in the power spectrum? –Compressibility? –PPM method –Or is real?? Hyperviscosity destroys entire inertial range? –Can we trust any ideal method? Needed to wait for direct simulations

5 Hyperviscous, Smagorinsky, normal Inertial range unaffected by artificial diffusion Haugen & Brandenburg (PRE 70, , astro-ph/041266) height of bottleneck increased onset of bottleneck at same position

6 Relation to ‘laboratory’ 1D spectra Dobler, et al (2003, PRE 68, )

7 256 processor run at Haugen et al. (2003, ApJ 597, L131)

8 (ii) Helical dynamo saturation with hyperdiffusivity for ordinary hyperdiffusion ratio 5 3 =125 instead of 5 PRL 88,

9 (iii) Small scale dynamo: Pm dependence?? Small Pm=  : stars and discs around NSs and YSOs Here: non-helically forced turbulence Schekochihin Haugen Brandenburg et al (2005) k Cattaneo, Boldyrev

10 (iv) Does compressibility affect the dynamo? Direct simulation,  =5 Direct and shock-capturing simulations,  =1 Shocks sweep up all the field: dynamo harder? -- or artifact of shock diffusion?  Bimodal behavior!

Supersonic shock turblence Gustafsson et al. (2006, A&A, in press)

12 LES conclusions Hydro: LES does a good job, but hi-res important –the bottleneck is physical –hyperviscosity does not affect inertial range Helical MHD: hyperresistivity exaggerates B-field Prandtl number does matter! –LES for B-field difficult or impossible! Fundamental questions  idealized simulations important at this stage!

13 Pencil Code Started in Sept with Wolfgang Dobler High order (6 th order in space, 3 rd order in time) Cache & memory efficient MPI, can run PacxMPI (across countries!) Maintained/developed by ~20 people (CVS!) Automatic validation (over night or any time) Max resolution so far , 256 procs Isotropic turbulence –MHD, passive scl, CR Stratified layers –Convection, radiation Shearing box –MRI, dust, interstellar Sphere embedded in box –Fully convective stars –geodynamo Other applications –Homochirality –Spherical coordinates

14 (i) Higher order – less viscosity

15 (ii) High-order temporal schemes Main advantage: low amplitude errors 3 rd order 2 nd order 1 st order 2N-RK3 scheme (Williamson 1980)

16 Cartesian box MHD equations Induction Equation: Magn. Vector potential Momentum and Continuity eqns Viscous force forcing function (eigenfunction of curl)

17 Vector potential B=curlA, advantage: divB=0 J=curlB=curl(curlA) =curl2A Not a disadvantage: consider Alfven waves B-formulation A-formulation 2 nd der once is better than 1 st der twice!

18 Comparison of A and B methods

19 Wallclock time versus processor # nearly linear Scaling 100 Mb/s shows limitations Gb/s no limitation

20 Forced LS dynamo with no stratification Open bc critical Helicity losses Shear relevant to the sun azimuthally averaged Actual field: (i) kinematic phase (ii) late phase

21 Current helicity and magn. hel. flux Bao & Zhang (1998), neg. in north, plus in south (also Seehafer 1990) Berger & Ruzmaikin (2000) S N DeVore (2000) (for BR & CME)

22 Helicity fluxes at large and small scales Negative current helicity: net production in northern hemisphere Mx 2 /cycle Brandenburg & Sandin (2004, A&A 427, 13) Helicity fluxes from shear: Vishniac & Cho (2001, ApJ 550, 752) Subramanian & Brandenburg (2004, PRL 93, 20500)

23 Application to the sun: spots rooted at r/R=0.95 Benevolenskaya, Hoeksema, Kosovichev, Scherrer (1999) Pulkkinen & Tuominen (1998)  =  AZ  =(180/  ) (1.5x10 7 ) (2  ) =360 x 0.15 = 54 degrees!

24 Simulations of near-surface shear Unstable layer in 0<z<1 0 o latitude 4x4x1 aspect ratio 512x512x256 Prograde pattern speed, but rather slow (Green & Kosovichev 2006)

25 Simulations of near-surface shear 4x4x1 aspect ratio 512x512x256 0 o lat 15 o lat negative uyuz stress  negative shear

Convection with rotation Inv. Rossby Nr. 2  d/u rms =4

Horizontal flow pattern Stongly retrograde motions Plunge into prograde shock y x

28 Arguments against and in favor? Flux storage Distortions weak Problems solved with meridional circulation Size of active regions Neg surface shear: equatorward migr. Max radial shear in low latitudes Youngest sunspots: 473 nHz Correct phase relation Strong pumping (Thomas et al.) 100 kG hard to explain Tube integrity Single circulation cell Too many flux belts* Max shear at poles* Phase relation* 1.3 yr instead of 11 yr at bot Rapid buoyant loss* Strong distortions* (Hale’s polarity) Long term stability of active regions* No anisotropy of supergranulation in favor against Tachocline dynamosDistributed/near-surface dynamo Brandenburg (2005, ApJ 625, 539)

Is magnetic buoyancy a problem? Stratified dynamo simulation in 1990 Expected strong buoyancy losses, but no: downward pumping Tobias et al. (2001)

Is magnetic buoyancy a problem? Stratified dynamo simulation in 1990 Expected strong buoyancy losses, but no: downward pumping Brandenburg et al. (1996)

Is magnetic buoyancy a problem? Stratified dynamo simulation in 1990 Expected strong buoyancy losses, but no: downward pumping Tobias et al. (2001)

32 Conclusions Shearflow turbulence: likely to produce LS field –even w/o stratification (WxJ effect, similar to Rädler’s  xJ effect) Stratification: can lead to  effect –modify WxJ effect –but also instability of its own SS dynamo not obvious at small Pm Application to the sun? –distributed dynamo  can produce bipolar regions –  perhaps not so important? –solution to quenching problem? No:  M even from WxJ effect Mx 2 /cycle