STRUCTURE, CONTINUED Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections 3.5-3.7, 4.3-4.9, 7.2, 7.6.

Slides:



Advertisements
Similar presentations
Newman Projections & Cycloalkane Structure
Advertisements

4. Organic Compounds: Cycloalkanes and their Stereochemistry
Chapter 7 Cyclic Compounds. Stereochemistry of Reactions.
Organic Chem I: lecture 9 by Doba Jackson, Ph.D.

The properties of the cycloalkanes differ from those of their straight chain analogs. Cycloalkanes have higher boiling points, melting points, and densities.
1 Fall, 2009 Organic Chemistry I Cycloalkanes Organic Chemistry I Cycloalkanes Dr. Ralph C. Gatrone Department of Chemistry and Physics Virginia State.
Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis.
Case Western Reserve University
Chapter 3 Structure and Stereochemistry of Alkanes
CHE-240 Unit 1 Structure and Stereochemistry of Alkanes CHAPTER THREE
Chapter 31 Organic Chemistry, 7 th Edition L. G. Wade, Jr. Copyright © 2010 Pearson Education, Inc. Structure and Stereochemistry of Alkanes.
Alkanes Acyclic: CnH2n+2 Cyclic (one ring): CnH2n
CHE 311 Organic Chemistry I Dr. Jerome K. Williams, Ph.D. Saint Leo University.
Chapter 3 Alkanes and Cycloalkanes: Conformations and cis-trans Stereoisomers 1.
Stereochemistry of Alkanes and Cycloalkanes Based on McMurry’s Organic Chemistry, 6 th edition, Chapter 4 ©2003 Ronald Kluger Department of Chemistry University.
Iran University of Science & Technology
Chapter 4 Organic Compounds: Cycloalkanes and Their Stereochemistry
Section 2.7 Conformational Isomerism. Stereoisomerism- isomer variations in spatial or 3-D orientation of atoms. One type of stereoisomerism is conformational.
Chapter 3 Alkanes and Cycloalkanes: Conformations and cis-trans Stereoisomers Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
4. Organic Compounds: Cycloalkanes and their Stereochemistry Why this chapter? Because cyclic molecules are commonly encountered in all classes of biomolecules:
Conformational Analysis Newman Projections Ring Strain Cyclohexane Conformations.
Newman Projections and Conformational Isomers. Newman Projections Is a way to draw chemical conformations and views a carbon - carbon chemical bond from.
ERT 102 Organic Chemistry ERT 102/4 ORGANIC CHEMISTRY Alina Rahayu Mohamed School of Bioprocess Engineering, UniMAP
Chapter 3 An Introduction to Organic Compounds, Nomenclature, Physical Properties, and Representation of Structure 1 Dr. Sujatha Krishnaswamy Chemistry.
Conformations Staggered conformation: a conformation about a carbon-carbon single bond where the atoms on one carbon are as far apart from atoms on the.
© Prentice Hall 2001Chapter 21 Conformations of Alkanes: Rotation about C-C Single Bonds Different spatial arrangements of atoms that result from rotation.
1 CH 4: Organic Compounds: Cycloalkanes and their Stereochemistry Renee Y. Becker CHM 2210 Valencia Community College.
Carey Chapter 3 – Conformations of Alkanes and Cycloalkanes Figure 3.5.
Chapter 4: Cyclohexanes and their Stereochemistry
Chapter 31 Organic Chemistry, 7 th Edition L. G. Wade, Jr. Copyright © 2010 Pearson Education, Inc. Structure and Stereochemistry of Alkanes.
Cycloalkanes and their Stereochemistry Chapter 4.
Organic Chemistry By Dr. Mehnaz Kamal Assistant Professor, Pharmaceutical Chemistry Prince Sattam Bin Abdulaziz University.
Chapter 3 Conformations of Alkanes and Cycloalkanes Conformations or Conformers or Rotamers; Different spatial arrangements of a molecule that are generated.
CYCLOALKANES 1. 2 Cycloalkanes Cycloalkanes have molecular formula C n H 2n and contain carbon atoms arranged in a ring. Simple cycloalkanes are named.
CHEMISTRY 2500 Topic #4: Conformations of Organic Molecules Fall 2014 Dr. Susan Findlay.
Organic Compounds: Cycloalkanes and Their Stereochemistry
Lecture 3. Symmetry elements :. One example when C n is present but the molecule is chiral. The molecule is chiral.
Chapter 4: Lecture PowerPoint
4. Stereochemistry of Alkanes and Cycloalkanes Based on McMurry’s Organic Chemistry, 6 th edition, Chapter 4 ©2003 Ronald Kluger Department of Chemistry.
Structure and Stereochemistry of Alkanes
4. Stereochemistry of Alkanes and Cycloalkanes. 2 The Shapes of Molecules The three-dimensional shapes of molecules result from many forces There is free.

Alkanes & Cycloalkanes Cycloalkanes contain rings of carbon atoms.
Chapter 4 Organic Compounds: Cycloalkanes and their Stereochemistry
Alkanes and Cycloalkanes
Alkanes and Cycloalkanes
4.4 Relative Stability of Isomers
Cycloalkanes Many organic compounds contain cyclic or ring structures:
Carey Chapter 3 – Conformations of Alkanes and Cycloalkanes
DUCS First General Meeting!
Chapter 4 Organic Compounds: Cycloalkanes and their Stereochemistry
Molecular conformations
4. Organic Compounds: Cycloalkanes and their Stereochemistry
Stereochemistry of Organic Compounds
4. Organic Compounds: Cycloalkanes and their Stereochemistry
Chapter 4: Cyclohexanes and their Stereochemistry
Cyclic Hydrocarbons.
CYCLOALKANES.
MOLECULAR CONFORMATION
Ring Strain = Angle Strain + Torsional Strain + Steric Strain
Chapter 4 Organic Compounds: Cycloalkanes and their Stereochemistry
Page: 89.
Stereochemistry of Alkanes and Cycloalkanes
4. Organic Compounds: Cycloalkanes and their Stereochemistry
Alkanes and Cycloalkanes: Conformations and
Chemsketch files 1. Conformations of straight chain alkanes
Carey Chapter 3 – Conformations of Alkanes and Cycloalkanes
Carey Chapter 3 – Conformations of Alkanes and Cycloalkanes
4. Organic Compounds: Cycloalkanes and their Stereochemistry
Presentation transcript:

STRUCTURE, CONTINUED Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , , 7.2, 7.6

Topics Conformations of Alkanes and Cycloalkanes Unsaturation Alkene Stability

Molecular Model Kits How to use Make a model for ethane Make a model for butane Make a model for cyclohexane Use 6 white hydrogens and 6 green hydrogens Put 1 green and 1 white hydrogen on each carbon atom The green and white hydrogen atoms should alternate (so as you look at the molecule from the top the H’s should alternate green- white-green-white-green-white around the ring)

Alkane Three-dimensional Structure Methane: With 2 or more carbons, 3D arrangement can change due to C─C bond rotation Conformations Same molecular formula Same atom connectivity Different 3D arrangement due to rotation around single bond Ethane:

Newman Projections Used to better visualize conformations View the C─C from the end (look down the C─C bond) Represent the C atoms as a dot (front carbon) and circle (back carbon) Show bonds coming out of the circle and dot Example:

Ethane Conformations Staggered vs. eclipsed Staggered is more stable (lower E) due to maximum separation of electron pairs in covalent bonds Eclipsed is less stable (higher E) due to electron repulsions

Dihedral Angle The degree of rotation between C-H bonds on the front and back carbons Torsional strain Accounts for energy difference between eclipsed and staggered Barrier to rotation Caused by electron repulsion Overcome by collisions of molecules

Butane Conformations Look down C2─C3 bond to draw Newman projections Each C has 2 H atoms and 1 CH 3 group Dihedral angle is angle between CH 3 groups There are six conformations of butane: How many staggered conformations? How many eclipsed?

Strain in Butane Conformations Torsional strain Barrier to rotation Example: eclipsed vs. staggered conformations Steric strain Repulsive interaction when atoms are forced close together (occupy the same space) Example: CH 3 -H eclipsed vs. CH 3 -CH 3 eclipsed conformations Example: Anti vs. gauche conformations So, which conformation is lowest in E? Highest in E?

Butane Conformations

Cycloalkane Three-dimensional Structure C atoms in cycloalkanes are sp 3 Bond angles are not always 109.5º Bond angles are dictated by the number of atoms in the ring Angle strain = Forcing angles smaller or larger than 109.5º Cycloalkanes can also have torsional strain (eclipsed H’s)

Strain in Cycloalkanes

Cycloalkane Conformations Cycloalkanes adopt more stable conformations to relieve strain Cyclopropane “Bent” bonds

Cycloalkane Conformations Cyclobutane Puckered conformation Cyclopentane Envelope conformation

Cyclohexane Most stable cycloalkane Most abundant in nature No angle strain (109.5º) No torsional strain (all H’s staggered) Conformation = chair

Cyclohexane Axial and equatorial hydrogens Axial = parallel to axis through ring Equatorial = perpendicular to axis Each C has one axial H and one equatorial H Look at molecular model

Cyclohexane

Ring Flip Interconversion of two chair conformations Try this with your molecular model If no substituents, these conformations are equal in energy

Monosubstituted Cyclohexanes Two conformations 1. Substituent in axial position 2. Substituent in equatorial position These conformations are not equal in energy Example: methylcyclohexane Steric strain = 1,3-diaxial interactions Larger groups have more steric strain

Disubstituted Cyclohexanes The most stable conformation has the most substituents in the equatorial position Conformational analysis Look at all chair conformations (cis and trans) and analyze stability Example: 1,4-dimethylcyclohexane

Additional Cyclohexane Conformations Boat No angle strain High torsional strain High steric strain Very unstable Twist-boat Relieves some torsional and steric strain No angle strain Lower E than boat Higher E than chair

Conformations of Polycyclic Molecules Fused rings Typically adopt chair conformations Norbornane and derivatives locked in boat conformation

Degree of Unsaturation Unsaturated compounds Have less than (2n+2) H atoms for (n) C atoms Contain elements of unsaturation  bonds Rings Calculating degree of unsaturation Index of Hydrogen Deficiency (IHD) IHD = C - ½ (H + X) + ½ (N) + 1 Ex: C 6 H 14 IHD = 6 - ½(14) + 1 = 0 Alkane Ex: C 6 H 12 IHD = 6 - ½(12) + 1 = 1 1  bond or 1 ring Ex: C 6 H 10 IHD = 6 - ½(10) + 1 = 2 2  bonds, 2 rings, or 1 of each C 6 H 14 C 6 H 12 C 6 H 10

Alkene Stability Which alkene is more stable, cis or trans? Cis has steric strain between R groups

Alkene Stability Stability determined by heats of hydrogenation Heat of reaction for addition of H 2 (with metal catalyst) to alkene Heat of reaction is proportional to energy of alkene Smaller magnitude  H = more stable alkene

Alkene Stability Trends in alkene stability Trans is more stable than cis More substituted C=C is more stable Why? Hyperconjugation Stabilizing effect of adjacent orbital overlap Bond strengths sp 2 -sp 3 bond more stable than sp 3 -sp 3