Positional Notation 642 in base 10 positional notation is:

Slides:



Advertisements
Similar presentations
Chapter 2 Binary Values and Number Systems Chapter Goals Distinguish among categories of numbers Describe positional notation Convert numbers in.
Advertisements

09/11/06 Hofstra University – Overview of Computer Science, CSC005 1 Chapter 2 Binary Values and Number Systems.
Number Systems. 2 The total number of allowable symbols in a number system is called the radix or base of the system. Decimal Numbers: radix = 10 (symbols:
CS 151 Digital Systems Design Lecture 2 Number Systems Prof. Ahmed Sameh Room 239A.
Chapter Chapter Goals Know the different types of numbers Describe positional notation.
ENGIN112 L2: Number Systems September 5, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 2 Number Systems Russell Tessier KEB 309 G.
Chapter 02 Binary Values and Number Systems Nell Dale & John Lewis.
1 Number Systems. 2 Numbers Each number system is associated with a base or radix – The decimal number system is said to be of base or radix 10 A number.
Decimal to Binary Conversion Press any key to continue…
Number Systems and Arithmetic
© Copyright 2000 Indiana University Board of Trustees Proficiency Quiz Study Guide Note: The following slides are provided courtesy of Dr. Bob Orr (Computer.
Data Representation in Computers. Data Representation in Computers/Session 3 / 2 of 33 Number systems  The additive approach – Number earlier consisted.
Number Systems.
CS105 INTRODUCTION TO COMPUTER CONCEPTS BINARY VALUES & NUMBER SYSTEMS Instructor: Cuong (Charlie) Pham.
How Computers Work Dr. John P. Abraham Professor UTPA.
Chapter 2 Binary Values and Number Systems Chapter Goals Distinguish among categories of numbers Describe positional notation Convert numbers in.
Chapter 2 Binary Values and Number Systems. 2 2 Natural Numbers Zero and any number obtained by repeatedly adding one to it. Examples: 100, 0, 45645,
1 Week 2: Binary, Octal and Hexadecimal Numbers READING: Chapter 2.
Chapter 2 Binary Values and Number Systems Chapter Goals Distinguish among categories of numbers Describe positional notation Convert numbers in.
Binary Values and Number Systems Chapter Goals Distinguish among categories of numbers Describe positional notation Convert numbers in other bases.
Number systems, Operations, and Codes
Numbering System Base Conversion. Number systems Decimal – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Binary – 0, 1 Octal – 0, 1, 2, 3, 4, 5, 6, 7 Hexadecimal system.
Chapter1: Number Systems
Binary Values and Number Systems
Representing Information Digitally (Number systems) Nell Dale & John Lewis (adapted by Erin Chambers, Michael Goldwasser, Andrew Harrington)
CPS120: Introduction to Computer Science Computer Math: Converting to Decimal.
Lecture 2 Binary Values and Number Systems. The number 943 is an example of a number written in positional notation. The relative positions of the digits.
Number Systems Binary to Decimal Octal to Decimal Hexadecimal to Decimal Binary to Octal Binary to Hexadecimal Two’s Complement.
CISC1100: Binary Numbers Fall 2014, Dr. Zhang 1. Numeral System 2  A way for expressing numbers, using symbols in a consistent manner.  " 11 " can be.
1 Data Representation Characters, Integers and Real Numbers Binary Number System Octal Number System Hexadecimal Number System Powered by DeSiaMore.
Number System sneha.
Chapter 2 Number Systems: Decimal, Binary, and Hex.
Binary01.ppt Decimal Decimal: Base 10 means 10 Unique numerical digits ,00010,000 Weight Positions 3,
Discrete Mathematics Numbering System.
Introduction To Number Systems Binary System M. AL-Towaileb1.
Chapter 2 Binary Values and Number Systems Chapter Goals Distinguish among categories of numbers Describe positional notation Convert numbers in.
©2010 Cengage Learning SLIDES FOR CHAPTER 1 INTRODUCTION NUMBER SYSTEMS AND CONVERSION Click the mouse to move to the next page. Use the ESC key to exit.
Chapter 2 Binary Values and Number Systems in base 10 positional notation is: 6 x 10 2 = 6 x 100 = x 10 1 = 4 x 10 = x 10º = 2.
CSC 110 – Intro to Computing Lecture 3: Converting between bases & Arithmetic in other bases.
The Hexadecimal System is base 16. It is a shorthand method for representing the 8-bit bytes that are stored in the computer system. This system was chosen.
Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr.
Chapter 32 Binary Number System. Objectives After completing this chapter, you will be able to: –Describe the binary number system –Identify the place.
Binary Values. Numbers Natural Numbers Zero and any number obtained by repeatedly adding one to it. Examples: 100, 0, 45645, 32 Negative Numbers.
Week 1(Number System) Muhammad Ammad uddin Logic Design Lab I (CEN211)
Binary Values and Number Systems
Introduction To Number Systems
Digital Design Chapter One Digital Systems and Binary Numbers
Chapter 02 Nell Dale & John Lewis.
Octal to Decimal Decimal Octal Binary Hexadecimal.
Discrete Mathematics Numbering System.
Integer Real Numbers Character Boolean Memory Address CPU Data Types
Lecture 3: Binary values and number systems
Number Systems.
Writer:-Rashedul Hasan. Editor:- Jasim Uddin
Number System conversions
Number Systems.
IT 0213: INTRODUCTION TO COMPUTER ARCHITECTURE
Chapter 1 Number Systems & Conversions
Number Systems and Binary Arithmetic
Textbook Computer Science Illuminated 4th Edition  By Nell Dale, John Lewis - Jones and Bartlett Publishers 11/20/2018.
MMNSS COLLEGE,KOTTIYAM DEPARTMENT OF PHYSICS
Digital Logic Design (CSNB163)
Binary Values and Number Systems
Chapter Four Data Representation in Computers By Bezawit E.
Chapter 2 Number Systems.
Binary Values and Number Systems
Chapter 2 Number System.
Binary Values and Number Systems
Chapter 2 Number Systems.
Presentation transcript:

Positional Notation 642 in base 10 positional notation is: Continuing with our example… 642 in base 10 positional notation is: 6 x 102 = 6 x 100 = 600 + 4 x 101 = 4 x 10 = 40 + 2 x 10º = 2 x 1 = 2 = 642 in base 10 The power indicates the position of the number This number is in base 10 6

Positional Notation What if 642 has the base of 13? 642 in base 13 is equivalent to 1068 in base 10 + 6 x 132 = 6 x 169 = 1014 + 4 x 131 = 4 x 13 = 52 + 2 x 13º = 2 x 1 = 2 = 1068 in base 10 8 6

Binary Decimal is base 10 and has 10 digits: 0,1,2,3,4,5,6,7,8,9 Binary is base 2 and has 2 digits: 0,1 For a number to exist in a given number system, the number system must include those digits. For example, the number 284 only exists in base 9 and higher. 9

Bases Higher than 10 How are digits in bases higher than 10 represented? With distinct symbols for 10 and above. Base 16 has 16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F 10

Converting Octal to Decimal What is the decimal equivalent of the octal number 642? 6 x 82 = 6 x 64 = 384 + 4 x 81 = 4 x 8 = 32 + 2 x 8º = 2 x 1 = 2 = 418 in base 10 11

Converting Hexadecimal to Decimal What is the decimal equivalent of the hexadecimal number DEF? D x 162 = 13 x 256 = 3328 + E x 161 = 14 x 16 = 224 + F x 16º = 15 x 1 = 15 = 3567 in base 10 Remember, the digits in base 16 are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Converting Binary to Decimal What is the decimal equivalent of the binary number 1101110? 1 x 26 = 1 x 64 = 64 + 1 x 25 = 1 x 32 = 32 + 0 x 24 = 0 x 16 = 0 + 1 x 23 = 1 x 8 = 8 + 1 x 22 = 1 x 4 = 4 + 1 x 21 = 1 x 2 = 2 + 0 x 2º = 0 x 1 = 0 = 110 in base 10 13

Arithmetic in Binary Remember that there are only 2 digits in binary, 0 and 1 Position is key, carry values are used: Carry Values 1 1 1 1 1 1 1 0 1 0 1 1 1 +1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 14

Subtracting Binary Numbers Remember borrowing? Apply that concept here: 1 2 2 0 2 1 0 1 0 1 1 1 - 1 1 1 0 1 1 0 0 1 1 1 0 0 15

Power of 2 Number System Binary Octal Decimal 000 001 1 010 2 011 3 001 1 010 2 011 3 100 4 101 5 110 6 111 7 10 8 1001 11 9 1010 12 16

Converting Binary to Octal Groups of Three (from right) Convert each group 10101011 10 101 011 2 5 3 10101011 is 253 in base 8 17

Converting Binary to Hexadecimal Groups of Four (from right) Convert each group 10101011 1010 1011 A B 10101011 is AB in base 16 18

Converting Decimal to Other Bases Algorithm for converting base 10 to other bases While the quotient is not zero Divide the decimal number by the new base Make the remainder the next digit to the left in the answer Replace the original dividend with the quotient 19

Converting Decimal to Hexadecimal Try a Conversion The base 10 number 3567 is what number in base 16? 20

Binary and Computers Low Voltage = 0 Binary computers have storage units called binary digits or bits Low Voltage = 0 High Voltage = 1 all bits have 0 or 1 22

Binary and Computers Byte 8 bits The number of bits in a word determines the word length of the computer, but it is usually a multiple of 8 32-bit machines 64-bit machines etc. 23

AT LAST…. Describe the “special” relationship between bases 2, 8, and 16 Relate computing and bases that are powers of 2 To understand this we: Consider different types of numbering systems and positional notation Convert numbers in one base to another base 24 6