Courtesy: www.lab-initio.com. Quantitative observation = measurement NumberUnit Both must be present for measurement to have meaning!! Two major systems:

Slides:



Advertisements
Similar presentations
Homework Answers m/s m g/L cm3
Advertisements

Base Units of the SI System Quantity Base Unit Abbreviation Second s
Measurement and Significant Figures
Chapter 1: Measurements
Chapter 2 Measurements and Calculations.
Chapter 2 Introductory Chemistry Measurements and Calculations
Chapter 2 Standards of Measurement Objectives:  Understand Mass and Weight (2.1)  Identify the metric units of measurement (2.6)  Explain what causes.
Metric System Be able to measure/calculate mass, volume, distance, density & temperature 1.
Measurements and Calculations
Scientific Measurement
Chapter 3 Scientific Measurement
Measurements and Calculations
Measurements & Calculations
Chapter 2: Analyzing Data
Making Measurements and Using Numbers The guide to lab calculations.
Measurements and Calculations
Copyright©2004 by Houghton Mifflin Company. All rights reserved 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Chapter 2 Data Handling.
Mathematical Fundamentals. SI System Standard International System of measurement – metrics Has seven base units and many other units derived from these.
Chapter 2 The Metric System
Introduction to Chemistry.  No eating or drinking!  Wear goggles at all times!  Use common sense!
Measurements and Calculations
Zumdahl • Zumdahl • DeCoste
1 Measurement Quantitative Observation Comparison Based on an Accepted Scale –e.g. Meter Stick Has 2 Parts – the Number and the Unit –Number Tells Comparison.
Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl, Donald J. DeCoste University.
Chapter 3 Scientific Measurement Pioneer High School Mr. David Norton.
Why do we need it? Because in chemistry we are measuring very small things like protons and electrons and we need an easy way to express these numbers.
Accurate measurements are needed for a valid experiment.
Chapter 2 Measurements and Calculations. Chapter 2 Table of Contents Return to TOC Copyright © Cengage Learning. All rights reserved 2.1 Scientific Notation.
Chemistry Chapter 2 MeasurementsandCalculations. Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating hypotheses -
Units of Measurement Many properties of matter are quantitative, they are associated with numbers Always specify units when expressing a measured quantity.
Chemical Foundations Chapter 1. The Scientific Method Observation Hypothesis Experiment Theory (model) Prediction Experiment Theory Modified As needed.
Measurements and Calculations 1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric,
Chapter 2 Standards of Measurement Objectives:  Understand Mass and Weight (2.1)  Identify the metric units of measurement (2.6)  Explain what causes.
The Nature of Science and Technology
5 You can do it. Chapter 1 Matter and Measurement.
Chapter 2 Standards of Measurement Objectives:  Understand Mass and Weight (2.1)  Identify the metric units of measurement (2.6)  Explain what causes.
5. The metric system (SI system) is based on powers of 10.
1 Measurements. 2 Nature of Measurement Measurement - quantitative observation consisting of 2 parts Part 1 - number Part 2 - scale (unit) Part 2 - scale.
Section 2.1 Units and Measurements
Scientific Measurement Ch. 3. Scientific Notation 3-1.
Measurements & Calculations Chapter 2. Nature of Measurement Measurement - quantitative observation consisting of two parts: Part 1 - number Part 2 -
Section 5.1 Scientific Notation and Units 1.To show how very large or very small numbers can be expressed in scientific notation 2.To learn the English,
Chemical Foundations.  Every quantitative observation or measurement consists of two parts, the number and the unit.  The fundamental SI base units.
Chapter 3 Scientific Measurement Measurement In chemistry, #’s are either very small or very large 1 gram of hydrogen = 602,000,000,000,000,000,000,000.
Ch. 2.1 Scientific Method. 2.1 Goals 1. Describe the purpose of the scientific method. 2. Distinguish between qualitative and quantitative observations.
Foundations of Chemistry. Prefixes l Tera-T1,000,000,000, l giga- G 1,000,000, l mega - M 1,000, l kilo - k 1, l deci-d0.1.
Chapter 3. Measurement Measurement-A quantity that has both a number and a unit. EX: 12.0 feet In Chemistry the use of very large or very small numbers.
Copyright©2004 by Houghton Mifflin Company. All rights reserved 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
INTRODUCTION TO CHEMISTRY CHAPTERS 1 AND 2. 1.) WHAT IS CHEMISTRY?  The study of matter and the changes that matter undergoes.
Updated Aug 2006Created by C. Ippolito August 2006 Measurement Objectives: list three requirements for making a measurement express measurements in the.
Matter And Measurement 1 Matter and Measurement. Matter And Measurement 2 Length The measure of how much space an object occupies; The basic unit of length,
Chemistry and Calculations Chemistry Honors 2 Accuracy & Precision Precision: how closely individual measurements compare with each other Accuracy: how.
© Adrian Dingle’s Chemistry Pages 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, All rights reserved. These materials may NOT be copied or redistributed.
1 CHEMISTRY 101 Dr. IsmailFasfous  Textbook : Raymond Chang, 10th Edition  Office Location: Chemistry Building, Room 212  Office Telephone: 4738 
Chapter 2 Measurements and Calculations. 2.1 Scientific Notation  Scientific notation is a method for making very large or very small numbers more compact.
Measuring and Calculating Chapter 2. n Scientific method- a logical approach to solving problems n -Observation often involves making measurements and.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter.
Scientific Measurement Chapter 3. Not just numbers Scientists express values that are obtained in the lab. In the lab we use balances, thermometers, and.
Chapter 2: Measurements and Calculations Ch 2.1 Scientific Method Steps to the Scientific Method (1) Make observations-- Use your 5 senses to gather.
Section 3.1 – Measurements and Their Uncertainty A measurement is a quantity that has both a number and a unit. The unit typically used in the sciences.
Objectives To show how very large or very small numbers can be expressed in scientific notation To learn the English, metric, and SI systems of measurement.
Section 2.1 Units and Measurements
Measurement and Calculations
Scientific Measurement
Chapter 2 Table of Contents Section 1 Scientific Method
TOPIC 0B: Measurement.
Test 2: Standards of Measurement
Introduction to Chemistry and Measurement
What are the SI base units for time, length, mass, and temperature?
Presentation transcript:

Courtesy:

Quantitative observation = measurement NumberUnit Both must be present for measurement to have meaning!! Two major systems: English system (used in the US) and the metric system (used by most of rest of the world). Scientists worldwide use the metric system.

In 1960, the International System of units was created and is known as the SI system. Physical QuantityName of UnitAbbreviation Masskilogramkg Lengthmeterm Timeseconds TemperaturekelvinK Electric currentampereA Amount of substancemolemol Luminous intensitycandelacd

Prefixes are used to change the size of fundamental SI units.

Volume has the dimensions of (distance) 3. Example: length x width x height Derived SI unit = cubic meter (m 3 ). Traditional metric unit of volume is the liter (L). In SI terms, 1 L = 1 dm 3. Normally we measure volumes in lab in units of milliliters (mL) mL = 1L

Common types of laboratory equipment to measure volume.

Mass – the quantity of matter in an object Measured using a balance. Weight – the force exerted on an object by gravity. Measured using a spring scale.

When a person uses a measuring device such as a buret or a ruler, there is always uncertainty in the measurement. In other words, the last digit in a measurement is always estimated. The uncertainty of a measurement depends on the precision of the measuring device.

Consider the measurement of volume from the buret. Suppose 5 different people read this buret and the following measurements are obtained. PersonMeasurement mL mL mL mL mL The first 3 digits are all the same; these are digits read with certainty. The last digit is estimated and is called the uncertain digit.

Consider the two centimeter rulers at the left. Each ruler is measuring the same pencil. The best measurement obtained from the first ruler would be 9.5 cm. The best measurement obtained from the second ruler would be 9.51 cm. Why two different measurements? The second measurement is more precise, because you used a smaller unit to measure with. Digits that result from measurement such that only the digit farthest to the right is not known with certainty are called significant figures.

Precision – the degree of agreement among general measurements of the same quantity (how reproducible your measurements are). Accuracy – the agreement of a particular value with the true value.

Random errors mean that a measurement has an equal probability of being high or low. Occurs in estimating the value of the uncertain digit. Systematic errors occur in the same direction each time; they are always high or always low. Figure (a) indicates large random errors (poor technique). Figure (b) indicates small random errors but a large systematic error. Figure (c) indicates small random errors and no systematic error.

Each of 4 general chemistry students measured the mass of a chemistry textbook. They each weighed the book 4 times. Knowing that the true mass is 2.31 kg, which student weighed the book: a. accurately and precisely b. inaccurately but precisely c. accurately but imprecisely d. inaccurately and imprecisely Weighingstudent #1student #2student #3student # kg2.06 kg2.32 kg2.71 kg kg1.94 kg2.30 kg2.63 kg kg2.09 kg2.31 kg2.66 kg kg2.40 kg2.32 kg2.68 kg Average:2.31±0.16 kg2.12±0.14 kg2.31±0.01 kg2.67±0.03kg

Solution: You have to ask yourself two questions about each data set: 1.Is the average close to the accepted (true) value? If it is, then the result is accurate. 2.Is the average deviation small relative to the actual value? If it is, then the result is precise. Student # kg 2.23 kg 2.07 kg 2.55 kg 2.31±0.16 kg Student # kg 1.94 kg 2.09 kg 2.40 kg 2.12±0.14 kg Student # kg 2.30 kg 2.31 kg 2.32 kg 2.31±0.01 kg Student # kg 2.63 kg 2.66 kg 2.68 kg 2.67±0.03 kg Student #1 – accurate but imprecise Student #2 – inaccurate and imprecise Student #3 – accurate and precise Student #4 – inaccurate but precise

When taking measurements all certain digits plus the uncertain digit are significant. Example: Your bathroom scale weighs in 10 Newton increments and when you step onto it, the pointer stops between 550 and 560. You look at the scale and determine your weight to 557 N. You are certain of the first two places, 55, but not the last place 7. The last place is a guess and if it is your best guess, it also is significant.

When given measurements, the numbers that are significant are the digits 1 – 9, and the 0 when it is not merely a place holder. 1.When 0’s are between significant figures, 0’s are always significant. Example: 101 has 3 sig. fig. and has 5 sig. fig. 2.When the measurement is a whole number ending with 0’s, the 0’s are never significant. Example: 210 has 2 sig. fig. and 71,000,000 also has 2 sig. fig. Removal of the 0’s DO change the value (size) of the measurement, but the 0’s are place holders and are thus not significant.

3.When the measurement is less than a whole number, the 0’s between the decimal and other significant figures are never significant (they are place holders). Example: has 2 sig. fig. and has 3 sig. fig. Removal of the 0’s DO change the value (size) of the measurement, the 0’s are place holders and are thus not significant. 4.When the measurement is less than a whole number and the 0’s fall after the other significant numbers, the 0’s are always significant. Example: has 3 sig. fig. and has 4 sig. fig. The 0’s have no effect on the value (size) of the measurement. Therefore, these 0’s must have been included for another reason and that reason is to show precision of the measurement. Since these 0’s show precision they must be significant.

5.When the measurement is less than a whole number, and there is a 0 to the left of the decimal, the 0 is not significant. Example: 0.02 has only 1 sig. fig. and has 3 sig. fig. The 0 to the left of the decimal is only for clarity, it is neither a place holder nor adds to the accuracy of the measurement. 6.When the measurement is a whole number but ends with 0’s to the right of the decimal, the 0’s are significant. Example: 20.0 has 3 sig. fig. and has 8 sig. fig. The 0’s have no effect on the value (size) of the measurement. Therefore, these 0’s must have been included for another reason and that reason is to show precision of the measurement. Since these 0’s show precision they must therefore be significant.

1.For addition or subtraction, the result has the same number of decimal places as the least precise measurement (the measurement with the least number of decimal places) used in the calculation. Example: ________ Limiting term has one decimal place Corrected 31.1 One decimal place

2.When adding or subtracting numbers written with the ± notation, always add the ± uncertainties and then round off the ± value to the largest significant digit. Round off the answer to match. Example: (22.4 ± 0.5) + (14.76 ± 0.25) = ± 0.75 = 37.2 ± 0.8 The uncertainty begins in the tenths place… it is the last significant digit.

3.For multiplication or division, the number of significant figures in the result is the same as the number in the least precise measurement (the measurement with the least number of significant figures) used in the calculation. Example: 4.56 x 1.4 = 6.38 Limiting term has two significant figures Corrected 6.4 Two significant figures Example: How should the result of the following calculation be expressed? x x 3.92 = = (3 sig. fig.)

1.In a series of calculations, carry the extra digits through to the final result, then round. 2.If the digit to be removed a.is less than 5, the preceding digit stays the same. For example, 1.33 rounds to 1.3. b.is equal to or greater than 5, the preceding digit is increased by 1. For example, 1.36 rounds to 1.4.

You will often have to solve problems where there is a combination of mathematical operations. To get reasonable answers, you need to recall your order of operations, given the following table: Order of Operations 1.parentheses 2.exponents and logs 3.multiplication and division 4.addition and subtraction

Review Appendix A1.1 and handout.

Dimensional analysis (or unit factor method) – used to convert from one system of units to another. In dimensional analysis we treat a numerical problem as one involving a conversion of units from one kind to another. To do this we need one or more conversion factors (unit factors) to change the units of the given quantity to the units of the answer. A conversion factor is a fraction formed from a valid relationship or equality between units that is used to switch from one system of measurement and units to another.

For example, suppose we want to express a person’s height of 72.0 in. in centimeters. We need relationship or equality between inches and centimeters cm = 1 in. (exactly) If we divide both sides by 1 in., we obtain a conversion factor. Notice we have canceled the units from both the numerator and the denominator of the center fraction. Units behave just as numbers do in mathematical operations, which is a key part of dimensional analysis.

Now let’s multiply 72.0 in. by this fraction: Because we have multiplied 72.0 in. by something that is equal to 1, we know we haven’t changed the magnitude of the person’s height. We have changed the units (notice that inches cancel leaving centimeters which is what we wanted). Notice that our given quantity and desired quantity have the same number of significant figures (conversion factors are considered exact numbers and do not dictate significant figures). 3 sig. fig.

One of the benefits of dimensional analysis is that it lets you know when you have done the wrong arithmetic. From the relationship 2.54 cm = 1 in. we can construct two conversion factors. In the previous problem what if we used the incorrect conversion factor? Would it make a difference in our answer? None of our units cancel. In this case we get the wrong units!!!!

Can we use more than one conversion factor in a single problem? Example: In 1975, the world record for the long jump was ft. What is this distance in meters? Solution: We can state this problem as ft = ? m One of several sets of relationships we can use is 1 ft = 12 in. 1 in. = 2.54 cm 100 cm = 1 m Notice they take us from inches to centimeters to meters.

Notice if we had stopped after the first conversion factor, the units of the answer would be inches; if we stop after the second, the units would be centimeters, and after the third we get meters – the units we want. Note: this is not the only way we could have solved this problem. Other conversion factors could have been chosen. Important: you should be able to reason your way through a problem and find some set of relationships that can take you from the given information to the answer.

Three systems:

Note the size of the temperature unit (the degree) is the same for the Kelvin and Celsius scales. The difference is in their zero points. To convert between Kelvin and Celsius scales add or subtract Temperature (Kelvin) = temperature (Celsius) Temperature (Celsius) = temperature (Kelvin) – Unit for Celsius = o CUnit for Kelvin = K No degree symbol

To convert between the Celsius and Fahrenheit scales two adjustments must be made: (1)degree size (2)zero point 180 o F = 100 o C Conversion factor = or the reciprocal Degree size Zero Point 32 o F = 0 o C Subtract or add 32 when converting

Property of matter used by chemists as an “identification tag”. Density = mass of substance per unit volume of the substance Each pure substance has a characteristic density. Density can also be used to convert between mass and volume.

Be able to manipulate the formula for density. If given the density and mass of a substance how could you determine volume? If given the density and volume of a substance how could you determine mass? Remember!! A material will float on the surface of a liquid if the material has a density less than that of the liquid.