CS344 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 29 Introducing Neural Nets.

Slides:



Advertisements
Similar presentations
CS344: Principles of Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 11, 12: Perceptron Training 30 th and 31 st Jan, 2012.
Advertisements

Learning in Neural and Belief Networks - Feed Forward Neural Network 2001 년 3 월 28 일 안순길.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 15, 16: Perceptrons and their computing power 6 th and.
Neural Network I Week 7 1. Team Homework Assignment #9 Read pp. 327 – 334 and the Week 7 slide. Design a neural network for XOR (Exclusive OR) Explore.
Rutgers CS440, Fall 2003 Neural networks Reading: Ch. 20, Sec. 5, AIMA 2 nd Ed.
Connectionist Modeling Some material taken from cspeech.ucd.ie/~connectionism and Rich & Knight, 1991.
Carla P. Gomes CS4700 CS 4700: Foundations of Artificial Intelligence Prof. Carla P. Gomes Module: Intro Neural Networks (Reading:
How does the mind process all the information it receives?
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
Neurons, Neural Networks, and Learning 1. Human brain contains a massively interconnected net of (10 billion) neurons (cortical cells) Biological.
Artificial Intelligence Lecture No. 28 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
Chapter 14: Artificial Intelligence Invitation to Computer Science, C++ Version, Third Edition.
Artificial Neural Nets and AI Connectionism Sub symbolic reasoning.
 The most intelligent device - “Human Brain”.  The machine that revolutionized the whole world – “computer”.  Inefficiencies of the computer has lead.
Artificial Neural Network Yalong Li Some slides are from _24_2011_ann.pdf.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 25: Perceptrons; # of regions;
Artificial Neural Networks. Applied Problems: Image, Sound, and Pattern recognition Decision making  Knowledge discovery  Context-Dependent Analysis.
1 Machine Learning The Perceptron. 2 Heuristic Search Knowledge Based Systems (KBS) Genetic Algorithms (GAs)
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 31 and 32– Brain and Perceptron.
Artificial Neural Networks. The Brain How do brains work? How do human brains differ from that of other animals? Can we base models of artificial intelligence.
1 Pattern Classification X. 2 Content General Method K Nearest Neighbors Decision Trees Nerual Networks.
CS621: Artificial Intelligence Lecture 11: Perceptrons capacity Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
Elements of Neuronal Biophysics The human brain Seat of consciousness and cognition Perhaps the most complex information processing machine in nature.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 19: Fuzzy Logic and Neural Net Based IR.
Prof. Pushpak Bhattacharyya, IIT Bombay 1 CS 621 Artificial Intelligence Lecture /10/05 Prof. Pushpak Bhattacharyya Linear Separability,
CS623: Introduction to Computing with Neural Nets Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 41,42– Artificial Neural Network, Perceptron, Capacity 2 nd, 4 th Nov,
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 31: Feedforward N/W; sigmoid.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 30: Perceptron training convergence;
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 21 Computing power of Perceptrons and Perceptron Training.
Artificial Intelligence & Neural Network
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 29: Perceptron training and.
Mehdi Ghayoumi MSB rm 132 Ofc hr: Thur, a Machine Learning.
Instructor: Prof. Pushpak Bhattacharyya 13/08/2004 CS-621/CS-449 Lecture Notes CS621/CS449 Artificial Intelligence Lecture Notes Set 4: 24/08/2004, 25/08/2004,
CS 478 – Tools for Machine Learning and Data Mining Perceptron.
CS621 : Artificial Intelligence
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32: sigmoid neuron; Feedforward.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 21: Perceptron training and convergence.
Artificial Neural Networks Chapter 4 Perceptron Gradient Descent Multilayer Networks Backpropagation Algorithm 1.
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
CS 621 Artificial Intelligence Lecture /11/05 Guest Lecture by Prof
November 21, 2013Computer Vision Lecture 14: Object Recognition II 1 Statistical Pattern Recognition The formal description consists of relevant numerical.
1 Perceptron as one Type of Linear Discriminants IntroductionIntroduction Design of Primitive UnitsDesign of Primitive Units PerceptronsPerceptrons.
Artificial Intelligence CIS 342 The College of Saint Rose David Goldschmidt, Ph.D.
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
Perceptron vs. the point neuron Incoming signals from synapses are summed up at the soma, the biological “inner product” On crossing a threshold, the cell.
Where are we? What’s left? HW 7 due on Wednesday Finish learning this week. Exam #4 next Monday Final Exam is a take-home handed out next Friday in class.
Intro. ANN & Fuzzy Systems Lecture 3 Basic Definitions of ANN.
March 31, 2016Introduction to Artificial Intelligence Lecture 16: Neural Network Paradigms I 1 … let us move on to… Artificial Neural Networks.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 20: Neural Net Basics: Perceptron.
CS621: Artificial Intelligence Lecture 10: Perceptrons introduction Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
CS 621 Artificial Intelligence Lecture /11/05 Guest Lecture by Prof. Rohit Manchanda Biological Neurons - II.
Artificial Intelligence (CS 370D)
CS344: Introduction to Artificial Intelligence (associated lab: CS386)
Dr. Unnikrishnan P.C. Professor, EEE
Machine Learning. Support Vector Machines A Support Vector Machine (SVM) can be imagined as a surface that creates a boundary between points of data.
CS621: Artificial Intelligence
CS623: Introduction to Computing with Neural Nets (lecture-2)
Perceptron as one Type of Linear Discriminants
CS623: Introduction to Computing with Neural Nets (lecture-4)
Machine Learning. Support Vector Machines A Support Vector Machine (SVM) can be imagined as a surface that creates a boundary between points of data.
Machine Learning. Support Vector Machines A Support Vector Machine (SVM) can be imagined as a surface that creates a boundary between points of data.
Artificial Intelligence Lecture No. 28
CS 621 Artificial Intelligence Lecture /10/05 Prof
CS621: Artificial Intelligence
CS623: Introduction to Computing with Neural Nets (lecture-3)
CS344 : Introduction to Artificial Intelligence
CS621: Artificial Intelligence Lecture 22-23: Sigmoid neuron, Backpropagation (Lecture 20 and 21 taken by Anup on Graphical Models) Pushpak Bhattacharyya.
Prof. Pushpak Bhattacharyya, IIT Bombay
CS621 : Artificial Intelligence
Presentation transcript:

CS344 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 29 Introducing Neural Nets

Brain : a computational machine? Information processing: brains vs computers  brains better at perception / cognition  slower at numerical calculations  parallel and distributed Processing  associative memory

Brain : a computational machine? (contd.) Evolutionarily, brain has developed algorithms most suitable for survival Algorithms unknown: the search is on Brain astonishing in the amount of information it processes –Typical computers: 10 9 operations/sec –Housefly brain: operations/sec

Brain facts & figures Basic building block of nervous system: nerve cell (neuron) ~ neurons in brain ~ connections between them Connections made at “synapses” The speed: events on millisecond scale in neurons, nanosecond scale in silicon chips

Neuron - “classical” Dendrites –Receiving stations of neurons –Don't generate action potentials Cell body –Site at which information received is integrated Axon –Generate and relay action potential –Terminal Relays information to next neuron in the pathway

Computation in Biological Neuron Incoming signals from synapses are summed up at the soma, the biological “inner product” On crossing a threshold, the cell “fires” generating an action potential in the axon hillock region Synaptic inputs: Artist’s conception

The biological neuron Pyramidal neuron, from the amygdala (Rupshi et al. 2005) A CA1 pyramidal neuron (Mel et al. 2004)

A perspective of AI Artificial Intelligence - Knowledge based computing Disciplines which form the core of AI - inner circle Fields which draw from these disciplines - outer circle. Planning CV NLP Expert Systems Robotics Search, RSN, LRN

Symbolic AI Connectionist AI is contrasted with Symbolic AI Symbolic AI - Physical Symbol System Hypothesis Every intelligent system can be constructed by storing and processing symbols and nothing more is necessary. Symbolic AI has a bearing on models of computation such as Turing Machine Von Neumann Machine Lambda calculus

Turing Machine & Von Neumann Machine

Challenges to Symbolic AI Motivation for challenging Symbolic AI A large number of computations and information process tasks that living beings are comfortable with, are not performed well by computers! The Differences Brain computation in living beings TM computation in computers Pattern Recognition Numerical Processing Learning oriented Programming oriented Distributed & parallel processing Centralized & serial processing Content addressable Location addressable

Perceptron

The Perceptron Model A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron. Output = y wnwn W n-1 w1w1 X n-1 x1x1 Threshold = θ

θ 1 y Step function / Threshold function y = 1 for Σw i x i >=θ =0 otherwise ΣwixiΣwixi

Features of Perceptron Input output behavior is discontinuous and the derivative does not exist at Σw i x i = θ Σw i x i - θ is the net input denoted as net Referred to as a linear threshold element - linearity because of x appearing with power 1 y= f(net): Relation between y and net is non-linear

Computation of Boolean functions AND of 2 inputs X1 x2 y The parameter values (weights & thresholds) need to be found. y w1w1 w2w2 x1x1 x2x2 θ

Computing parameter values w1 * 0 + w2 * 0 = 0; since y=0 w1 * 0 + w2 * 1 <= θ  w2 <= θ; since y=0 w1 * 1 + w2 * 0 <= θ  w1 <= θ; since y=0 w1 * 1 + w2 *1 > θ  w1 + w2 > θ; since y=1 w1 = w2 = = 0.5 satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions OR can be computed using values of w1 = w2 = 1 and = 0.5 XOR function gives rise to the following inequalities: w1 * 0 + w2 * 0 = 0 w1 * 0 + w2 * 1 > θ  w2 > θ w1 * 1 + w2 * 0 > θ  w1 > θ w1 * 1 + w2 *1 <= θ  w1 + w2 <= θ No set of parameter values satisfy these inequalities.

Threshold functions n # Boolean functions (2^2^n) #Threshold Functions (2 n2 ) K 1008 Functions computable by perceptrons - threshold functions #TF becomes negligibly small for larger values of #BF. For n=2, all functions except XOR and XNOR are computable.

Concept of Hyper-planes ∑ w i x i = θ defines a linear surface in the (W,θ) space, where W= is an n-dimensional vector. A point in this (W,θ) space defines a perceptron. y x1x1... θ w1w1 w2w2 w3w3 wnwn x2x2 x3x3 xnxn

Perceptron Property Two perceptrons may have different parameters but same functional values. Example of the simplest perceptron w.x>0 gives y=1 w.x≤0 gives y=0 Depending on different values of w and θ, four different functions are possible θ y x1x1 w1w1

Simple perceptron contd f4f3f2f1x θ≥0 w≤θ θ≥0 w> θ θ<0 w≤ θ θ<0 W< θ 0-function Identity Function Complement Function True-Function

Counting the number of functions for the simplest perceptron For the simplest perceptron, the equation is w.x=θ. Substituting x=0 and x=1, we get θ=0 and w=θ. These two lines intersect to form four regions, which correspond to the four functions. θ=0 w=θ R1 R2 R3 R4 θ w

Fundamental Observation The number of TFs computable by a perceptron is equal to the number of regions produced by 2 n hyper- planes,obtained by plugging in the values in the equation ∑ i=1 n w i x i = θ