EEG/MEG Source Localisation SPM Course – Wellcome Trust Centre for Neuroimaging – Oct. 2008 ? ? Jérémie Mattout, Christophe Phillips Jean Daunizeau Guillaume.

Slides:



Advertisements
Similar presentations
J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Bayesian inference.
Advertisements

EEG/MEG source reconstruction in SPM5
Bayesian inference Lee Harrison York Neuroimaging Centre 01 / 05 / 2009.
EEG-MEG source reconstruction
Bayesian inference Jean Daunizeau Wellcome Trust Centre for Neuroimaging 16 / 05 / 2008.
Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
EEG/MEG Source Localisation
STATISTICAL ANALYSIS AND SOURCE LOCALISATION
SPM for EEG/MEG Guillaume Flandin
Bayesian models for fMRI data
Dynamic Causal Modelling for ERP/ERFs Valentina Doria Georg Kaegi Methods for Dummies 19/03/2008.
M/EEG forward problem & solutions Brussels 2011 SPM-M/EEG course January 2011 C. Phillips, Cyclotron Research Centre, ULg, Belgium.
MEG/EEG Inverse problem and solutions In a Bayesian Framework EEG/MEG SPM course, Bruxelles, 2011 Jérémie Mattout Lyon Neuroscience Research Centre ? ?
From Neuronal activity to EEG/MEG signals
The M/EEG inverse problem
Bayesian models for fMRI data
Bayesian models for fMRI data Methods & models for fMRI data analysis 06 May 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
Preprocessing II: Between Subjects John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK.
Source Localization for EEG/MEG Stavroula Kousta Martin Chadwick Methods for Dummies 2007.
Sensor & Source Space Statistics Sensor & Source Space Statistics Rik Henson (MRC CBU, Cambridge) With thanks to Jason Taylor, Vladimir Litvak, Guillaume.
The M/EEG inverse problem and solutions Gareth R. Barnes.
General Linear Model & Classical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM M/EEGCourse London, May.
Source localization for EEG and MEG Methods for Dummies 2006 FIL Bahador Bahrami.
Source localization MfD 2010, 17th Feb 2010
SENSOR LEVEL ANALYSIS AND SOURCE LOCALISATION in M/EEG METHODS FOR DUMMIES Mrudul Bhatt & Wenjun Bai.
Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)
Hierarchical Bayesian Modeling (HBM) in EEG and MEG source analysis Carsten Wolters Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-Universität.
DCM for ERPs/EFPs Clare Palmer & Elina Jacobs Expert: Dimitris Pinotsis.
EEG/MEG source reconstruction
Contrasts & Inference - EEG & MEG Himn Sabir 1. Topics 1 st level analysis 2 nd level analysis Space-Time SPMs Time-frequency analysis Conclusion 2.
Bayesian Inference and Posterior Probability Maps Guillaume Flandin Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course,
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK UZH – Foundations of Human Social Behaviour, Zurich, Switzerland Dynamic Causal Modelling:
Wellcome Dept. of Imaging Neuroscience University College London
Dynamic Causal Modelling of Evoked Responses in EEG/MEG Wellcome Dept. of Imaging Neuroscience University College London Stefan Kiebel.
J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.
1 Analytic Solution of Hierarchical Variational Bayes Approach in Linear Inverse Problem Shinichi Nakajima, Sumio Watanabe Nikon Corporation Tokyo Institute.
Dynamic Causal Modelling for EEG and MEG
Bayesian models for fMRI data Methods & models for fMRI data analysis November 2011 With many thanks for slides & images to: FIL Methods group, particularly.
EEG/MEG source reconstruction
MfD EEG/MEG Source Localization 4 th Feb 2009 Maro Machizawa Himn Sabir Expert: Vladimir Litvak.
Dynamic Causal Model for evoked responses in MEG/EEG Rosalyn Moran.
Multimodal Brain Imaging Wellcome Trust Centre for Neuroimaging, University College, London Guillaume Flandin, CEA, Paris Nelson Trujillo-Barreto, CNC,
Bayesian Methods Will Penny and Guillaume Flandin Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course, London, May 12.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
M/EEG: Statistical analysis and source localisation Expert: Vladimir Litvak Mathilde De Kerangal & Anne Löffler Methods for Dummies, March 2, 2016.
Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Zurich, February 2008 Bayesian Inference.
MEG Analysis in SPM Rik Henson (MRC CBU, Cambridge) Jeremie Mattout, Christophe Phillips, Stefan Kiebel, Olivier David, Vladimir Litvak,... & Karl Friston.
Bayesian Inference in SPM2 Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience,
1 Jean Daunizeau Wellcome Trust Centre for Neuroimaging 23 / 10 / 2009 EEG-MEG source reconstruction.
Imaging Source Reconstruction in the Bayesian Framework
Group Analyses Guillaume Flandin SPM Course London, October 2016
SPM for M/EEG - introduction
M/EEG Analysis in SPM Rik Henson (MRC CBU, Cambridge)
M/EEG Statistical Analysis & Source Localization
Generative Models of M/EEG:
Dynamic Causal Model for evoked responses in M/EEG Rosalyn Moran.
SPM2: Modelling and Inference
Dynamic Causal Modelling for M/EEG
Dynamic Causal Modelling
Guillaume Flandin Wellcome Trust Centre for Neuroimaging
Hierarchical Models and
Bayesian inference J. Daunizeau
M/EEG Statistical Analysis & Source Localization
Bayesian Inference in SPM2
Mixture Models with Adaptive Spatial Priors
Dynamic Causal Modelling for evoked responses
Will Penny Wellcome Trust Centre for Neuroimaging,
DCM Demo – Model Specification, Inversion and 2nd Level Inference
Presentation transcript:

EEG/MEG Source Localisation SPM Course – Wellcome Trust Centre for Neuroimaging – Oct ? ? Jérémie Mattout, Christophe Phillips Jean Daunizeau Guillaume Flandin Karl Friston Rik Henson Stefan Kiebel Vladimir Litvak

Outline EEG/MEG Source localisation 1.Introduction 2.Forward model 3.Inverse problem 4.Bayesian inference applied to the EEG/MEG inverse problem 5.Conclusion

Outline EEG/MEG Source localisation 1.Introduction 2.Forward model 3.Inverse problem 4.Bayesian inference applied to the EEG/MEG inverse problem 5.Conclusion

EEG/MEG Source localisation Introduction: overview

EEG/MEG Source localisation EEG/MEG source reconstruction process Forward model Inverse problem Introduction: overview

Outline EEG/MEG Source localisation 1.Introduction 2.Forward model 3.Inverse problem 4.Bayesian inference applied to the EEG/MEG inverse problem 5.Conclusion

EEG/MEG Source localisation Forward model: formulation Forward model datasource parameters noiseforward operator

EEG/MEG Source localisation source biophysical model: current dipole EEG/MEG source models Equivalent Current Dipoles (ECD) Imaging or Distributed Forward model: source space - few dipoles with free location and orientation - many dipoles with fixed location and orientation

EEG/MEG Source localisation Forward model: imaging/distributed model datadipole amplitudes noisegain matrix

Outline EEG/MEG Source localisation 1.Introduction 2.Forward model 3.Inverse problem 4.Bayesian inference applied to the EEG/MEG inverse problem 5.Conclusion

EEG/MEG Source localisation « Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for efficient cooperation to be possible ? » Jacques Hadamard ( ) Inverse problem: an ill-posed problem Inverse problem 1.Existence 2.Unicity 3.Stability

EEG/MEG Source localisation Inverse problem: an ill-posed problem « Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for efficient cooperation to be possible ? » Jacques Hadamard ( ) 1.Existence 2.Unicity 3.Stability Inverse problem

EEG/MEG Source localisation Inverse problem: an ill-posed problem « Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for efficient cooperation to be possible ? » Jacques Hadamard ( ) 1.Existence 2.Unicity 3.Stability Inverse problem Introduction of prior knowledge (regularization) is needed

EEG/MEG Source localisation Inverse problem: regularization Data fit Adequacy with other modalities Spatial and temporal priors W = I : minimum norm W = Δ : maximum smoothness (LORETA) data fitprior (regularization term)

Outline EEG/MEG Source localisation 1.Introduction 2.Forward model 3.Inverse problem 4.Bayesian inference applied to the EEG/MEG inverse problem 5.Conclusion

EEG/MEG Source localisation Bayesian inference: probabilistic formulation likelihoodprior posterior evidence Forward model Inverse problem posterior likelihood

EEG/MEG Source localisation Bayesian inference: hierarchical linear model sensor (1 st ) level source (2 nd ) level Q : (known) variance components (λ,μ) : (unknown) hyperparameters likelihood prior

EEG/MEG Source localisation Bayesian inference: variance components Multiple Sparse Priors (MSP) … # dipoles Minimum Norm (IID) Maximum Smoothness (LORETA)

EEG/MEG Source localisation Bayesian inference: iterative estimation scheme M-step estimate while keeping constants E-step estimate while keeping constants Expectation-Maximization (EM) algorithm

EEG/MEG Source localisation Bayesian inference: model comparison model M i FiFi At convergence

Outline EEG/MEG Source localisation 1.Introduction 2.Forward model 3.Inverse problem 4.Bayesian inference applied to the EEG/MEG inverse problem 5.Conclusion

EEG/MEG Source localisation Conclusion: At the end of the day... Somesthesic data Bilateral auditory tone

EEG/MEG Source localisation Conclusion: At the group level... R L Individual reconstructions in MRI template space Group results p < 0.01 uncorrected RL

EEG/MEG Source localisation Conclusion: Summary Prior information is mandatory EEG/MEG source reconstruction: 1. forward model 2. inverse problem (ill-posed) Bayesian inference is used to: 1. incorpoate such prior information… 2. … and estimating their weight w.r.t the data 3. provide a quantitative feedback on model adequacy Forward model Inverse problem

EEG/MEG Source localisation source biophysical model: current dipole EEG/MEG source models Equivalent Current Dipoles (ECD) Imaging or Distributed Equivalent Current Dipole (ECD) solution few dipoles with free location and orientation many dipoles with fixed location and orientation

EEG/MEG Source localisation ECD approach: principle Forward model datadipole parameters noiseforward operator but a priori fixed number of sources considered  iterative fitting of the 6 parameters of each dipole

EEG/MEG Source localisation The locations s and moments w are drawn from normal distributions with precisions γ s and γ w. E is white observation noise with precision γ y. These are drawn from a prior gamma distribution. Dipole J with location s and moment w generated data Y using ECD solution: variational Bayes (VB) approach

EEG/MEG Source localisation ECD solution: “classical” vs. VB approaches “Classical”VB Hard constraintsYes Soft constraintsNoYes Noise accommodation No (in general) Yes Model comparison NoYES

EEG/MEG Source localisation can be applied to single time-slice data or average over time (MEG and EEG) useful for comparing several few-dipole solutions for selected time points (N100, N170, etc.) although not dynamic, can be used for building up intuition about underlying generators, or using as a motivation for DCM source models implemented in Matlab and available in SPM8b ECD solution: when and how to apply VB-ECD?

EEG/MEG Source localisation Example 1: somestesic stimulation Scalp distribution, 21ms post-stimulus ERP data over 64 channels VB-ECD solution

EEG/MEG Source localisation Example 2: auditory oddball Oddball stimuli Standard stimuli Scalp potential for auditory stimulations

Main references EEG/MEG Source localisation Litvak and Friston (2008) Electromagnetic source reconstruction for group studies Friston et al. (2008) Multiple sparse priors for the M/EEG inverse problem Kiebel et al. (2008) Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG Mattout et al. (2007) Canonical Source Reconstruction for MEG Daunizeau and Friston (2007) A mesostate-space model for EEG and MEG Henson et al. (2007) Population-level inferences for distributed MEG source localization under multiple constraints: application to face-evoked fields Friston et al. (2007) Variational free energy and the Laplace approximation Mattout et al. (2006) MEG source localization under multiple constraints Friston et al. (2006) Bayesian estimation of evoked and induced responses Phillips et al. (2005) An empirical Bayesian solution to the source reconstruction problem in EEG

EEG/MEG Source localisation

EEG/MEG - Log-normal hyperpriors - Enforces the non-negativity of the hyperparameters - Enables Automatic Relevance Determination (ARD) Bayesian inference: multiple sparse priors

EEG/MEG Source localisation Subjects MRI Anatomical warping Cortical mesh Canonical mesh [Un]-normalising spatial transformation MNI Space Forward model: canonical mesh

EEG/MEG Source localisation From Sensor to MRI space MRI derived meshes MEG Full setup EEG Rigid Transformation HeadShape Surface Matching + HeadShape Forward model: coregistration