Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from

Slides:



Advertisements
Similar presentations
1 Carnegie Mellon Machine-Level Programming II: Arithmetic & Control / : Introduction to Computer Systems 6 th Lecture, Jan 29, 2015 Carnegie.
Advertisements

MACHINE-LEVEL PROGRAMMING II: ARITHMETIC & CONTROL.
Machine Programming I: Basics
Machine-Level Programming I: Basics
Machine Programming – Procedures and IA32 Stack CENG334: Introduction to Operating Systems Instructor: Erol Sahin Acknowledgement: Most of the slides are.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-243: Introduction to Computer Systems 4 th Lecture, Sep. 2, 2010 Instructors: Randy Bryant.
University of Washington Last Time For loops  for loop → while loop → do-while loop → goto version  for loop → while loop → goto “jump to middle” version.
1 Carnegie Mellon Machine-Level Programming II: Arithmetic & Control / : Introduction to Computer Systems 6 th Lecture, May 28, 2015 Carnegie.
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS.
Machine-Level Programming III: Procedures Apr. 17, 2006 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables CS213.
Machine-Level Programming I: Introduction Sept. 10, 2002 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
– 1 – , F’02 ICS05 Instructor: Peter A. Dinda TA: Bin Lin Recitation 4.
Machine-Level Programming I: Introduction Apr. 10, 2006 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Machine-Level Programming III: Procedures Jan 30, 2003
Machine-Level Programming I: Introduction Apr. 14, 2008 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Machine-Level Programming I: Introduction Sept. 10, 2007 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Stack Activation Records Topics IA32 stack discipline Register saving conventions Creating pointers to local variables February 6, 2003 CSCE 212H Computer.
Machine-Level Programming I: Introduction Sept. 10, 2002 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Sep. 11, 2012 Instructors: Dave O’Hallaron,
1 Machine-Level Programming I: Basics Computer Systems Organization Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O’Hallaron.
Carnegie Mellon 1 Machine-Level Programming I: Basics Lecture, Feb. 14, 2013 These slides are from website which accompanies the.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Jan 28, 2014 Instructors: Seth Copen.
1 Introduction to x86 Assembly, part II or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from
Lee CSCE 312 TAMU 1 Based on slides provided by Randy Bryant and Dave O’Hallaron Machine-Level Programming III: Switch Statements and IA32 Procedures Instructor:
Ithaca College Machine-Level Programming IV: IA32 Procedures Comp 21000: Introduction to Computer Systems & Assembly Lang Spring 2013 * Modified slides.
Machine-Level Programming 1 Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
1 Carnegie Mellon Machine-Level Programming II: Arithmetic & Control : Introduction to Computer Systems 5 th Lecture, Sep. 7, 2010 Carnegie Mellon.
1 Seoul National University Machine-Level Programming II: Arithmetic & Control.
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS.
Machine-Level Programming III: Switch Statements and IA32 Procedures Seoul National University.
Fabián E. Bustamante, Spring 2007 Machine-Level Programming III - Procedures Today IA32 stack discipline Register saving conventions Creating pointers.
Assembly Programmer’s View
1 Carnegie Mellon Machine-Level Programming II: Arithmetic and Control Lecture, Feb. 28, 2012 These slides are from website which.
Machine-Level Programming 1 Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Machine-level Programming III: Procedures Topics –IA32 stack discipline –Register saving conventions –Creating pointers to local variables.
University of Washington x86 Programming I The Hardware/Software Interface CSE351 Winter 2013.
Carnegie Mellon 1 Machine-Level Programming I: Basics Lecture, Feb. 21, 2013 These slides are from website which accompanies the.
1 Carnegie Mellon Machine-Level Programming II: Arithmetic & Control / : Introduction to Computer Systems 6 th Lecture, Sep. 11, 2014 Carnegie.
1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Carnegie Mellon Machine-Level Programming II: Control Carnegie Mellon.
University of Washington x86 Programming II The Hardware/Software Interface CSE351 Winter 2013.
IA32 Stack –Region of memory managed with stack discipline –Grows toward lower addresses –Register %esp indicates lowest stack address address of top element.
Machine-Level Programming I: Introduction Jan. 30, 2001 Topics Assembly Programmer’s Execution Model Accessing Information –Registers –Memory Arithmetic.
Carnegie Mellon Machine-Level Programming II: Arithmetic & Control /18-243: Introduction to Computer Systems 6th Lecture, 5 June 2012 Carnegie Mellon.
1 Binghamton University Machine-Level Programming II: Arithmetic & Control CS220: Computer Systems II.
Machine-Level Programming 2 Control Flow Topics Condition Codes Setting Testing Control Flow If-then-else Varieties of Loops Switch Statements.
1 Binghamton University Machine-Level Programming I: Basics CS220: Computer Systems II.
X86 Assembly - Data.
Reading Condition Codes (Cont.)
Machine-Level Programming 2 Control Flow
Instruction Set Architecture
IA32 Processors Evolutionary Design
Machine-Level Programming II: Arithmetic & Control
Introduction to Assembly Language IA32
Machine-Level Programming 1 Introduction
Machine-Level Programming III: Switch Statements and IA32 Procedures
Machine-Level Programming 4 Procedures
Instructor: David Ferry
Condition Codes Single Bit Registers
C Prog. To Object Code text text binary binary Code in files p1.c p2.c
Machine-Level Programming 2 Control Flow
Machine-Level Programming 2 Control Flow
Machine-Level Programming III: Procedures Sept 18, 2001
Machine-Level Programming 2 Control Flow
Machine-Level Programming I: Introduction Feb. 1, 2000
X86 Assembly - Data.
Machine-Level Programming: Introduction
Machine-Level Programming II: Control Flow
Presentation transcript:

Carnegie Mellon 1 Introduction to x86 Assembly or “What does my laptop actually do?” Ymir Vigfusson Some slides gracefully borrowed from

Carnegie Mellon 2 So what is assembly really?

Carnegie Mellon 3 Why study assembly? triton$

Carnegie Mellon 4 One reason: Reverse engineering People who figure out what viruses do today $$$ !

Carnegie Mellon 5 Motivation: The Turing Machine!

Carnegie Mellon 6 Intel x86 Processors: Overview X86-64 / EM64t X86-32/IA32 X Pentium Pentium MMX Pentium III Pentium 4 Pentium 4E Pentium 4F Core 2 Duo Core i7 IA: often redefined as latest Intel architecture time ArchitecturesProcessors MMX SSE SSE2 SSE3 SSE4

Carnegie Mellon 7 Intel x86 Evolution: Milestones NameDateTransistorsMHz K5-10  First 16-bit processor. Basis for IBM PC & DOS  1MB address space K16-33  First 32 bit processor, referred to as IA32  Added “flat addressing”  Capable of running Unix  32-bit Linux/gcc uses no instructions introduced in later models Pentium 4F M  First 64-bit processor, referred to as x86-64 Core i M  Our shark machines

Carnegie Mellon 8 Intel x86 Processors Machine Evolution  M  Pentium M  Pentium/MMX M  PentiumPro M  Pentium III M  Pentium M  Core 2 Duo M  Core i M Added Features  Instructions to support multimedia operations  Parallel operations on 1, 2, and 4-byte data, both integer & FP  Instructions to enable more efficient conditional operations Linux/GCC Evolution  Two major steps: 1) support 32-bit ) support 64-bit x86-64

Carnegie Mellon 9 What is this? (gdb) disass checksum Dump of assembler code for function checksum: 0x : push %ebp 0x : xor %edx,%edx 0x : mov %esp,%ebp 0x : xor %eax,%eax 0x : push %esi 0x : mov 0x8(%ebp),%esi 0x b : push %ebx 0x c : mov 0xc(%ebp),%ebx 0x f : test %ebx,%ebx 0x : jle 0x x : nop 0x : lea 0x0(%esi,%eiz,1),%esi 0x : movsbl (%esi,%edx,1),%ecx 0x c : add $0x1,%edx 0x f : xor %ecx,%eax 0x : cmp %ebx,%edx 0x : jne 0x x : pop %ebx 0x : pop %esi 0x : pop %ebp 0x : ret End of assembler dump.

Carnegie Mellon 10 CPU Assembly Programmer’s View Programmer-Visible State  PC: Program counter  Address of next instruction  Called “EIP” (IA32) or “RIP” (x86-64)  Register file  Heavily used program data  Condition codes  Store status information about most recent arithmetic operation  Used for conditional branching PC Registers Memory Code Data Stack Addresses Data Instructions Condition Codes  Memory  Byte addressable array  Code and user data  Stack to support procedures

Carnegie Mellon 11 text binary Compiler ( gcc -S ) Assembler ( gcc or as ) Linker ( gcc or ld ) C program ( p1.c p2.c ) Asm program ( p1.s p2.s ) Object program ( p1.o p2.o ) Executable program ( p ) Static libraries (.a ) Turning C into Object Code  Code in files p1.c p2.c  Compile with command: gcc –O1 p1.c p2.c -o p  Use basic optimizations ( -O1 )  Put resulting binary in file p

Carnegie Mellon 12 Compiling Into Assembly C Code int sum(int x, int y) { int t = x+y; return t; } Generated IA32 Assembly sum: pushl %ebp movl %esp,%ebp movl 12(%ebp),%eax addl 8(%ebp),%eax popl %ebp ret Obtain with command /usr/local/bin/gcc –O1 –m32 -S code.c Produces file code.s Some compilers use instruction “ leave ”

Carnegie Mellon 13 Assembly Characteristics: Data Types “Integer” data of 1, 2, or 4 bytes  Data values  Addresses (untyped pointers) Floating point data of 4, 8, or 10 bytes No aggregate types such as arrays or structures  Just contiguously allocated bytes in memory

Carnegie Mellon 14 Assembly Characteristics: Operations Perform arithmetic function on register or memory data Transfer data between memory and register  Load data from memory into register  Store register data into memory Transfer control  Unconditional jumps to/from procedures  Conditional branches

Carnegie Mellon 15 Code for sum 0x : 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45 0x08 0x5d 0xc3 Object Code Assembler  Translates.s into.o  Binary encoding of each instruction  Nearly-complete image of executable code  Missing linkages between code in different files Linker  Resolves references between files  Combines with static run-time libraries  E.g., code for malloc, printf  Some libraries are dynamically linked  Linking occurs when program begins execution Total of 11 bytes Each instruction 1, 2, or 3 bytes Starts at address 0x401040

Carnegie Mellon 16 Machine Instruction Example C Code  Add two signed integers Assembly  Add 2 4-byte integers  “Long” words in GCC parlance  Same instruction whether signed or unsigned  Operands: x :Register %eax y :MemoryM[ %ebp+8] t :Register %eax –Return function value in %eax Object Code  3-byte instruction  Stored at address 0x80483ca int t = x+y; addl 8(%ebp),%eax 0x80483ca: Similar to expression: x += y More precisely: int eax; int *ebp; eax += ebp[2]

Carnegie Mellon 17 Disassembled Disassembling Object Code Disassembler objdump -d p  Useful tool for examining object code  Analyzes bit pattern of series of instructions  Produces approximate rendition of assembly code  Can be run on either complete executable or.o file c4 : 80483c4: 55 push %ebp 80483c5: 89 e5 mov %esp,%ebp 80483c7: 8b 45 0c mov 0xc(%ebp),%eax 80483ca: add 0x8(%ebp),%eax 80483cd: 5d pop %ebp 80483ce: c3 ret

Carnegie Mellon 18 Disassembled Dump of assembler code for function sum: 0x080483c4 : push %ebp 0x080483c5 : mov %esp,%ebp 0x080483c7 : mov 0xc(%ebp),%eax 0x080483ca : add 0x8(%ebp),%eax 0x080483cd : pop %ebp 0x080483ce : ret Alternate Disassembly Within gdb Debugger gdb p disassemble sum  Disassemble procedure x/11xb sum  Examine the 11 bytes starting at sum Object 0x401040: 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45 0x08 0x5d 0xc3

Carnegie Mellon 19 What Can be Disassembled? Anything that can be interpreted as executable code Disassembler examines bytes and reconstructs assembly source % objdump -d WINWORD.EXE WINWORD.EXE: file format pei-i386 No symbols in "WINWORD.EXE". Disassembly of section.text: : : 55 push %ebp : 8b ec mov %esp,%ebp : 6a ff push $0xffffffff : push $0x a: dc 4c 30 push $0x304cdc91

Carnegie Mellon 20 Registers, operands, move operation

Carnegie Mellon 21 Integer Registers (IA32) %eax %ecx %edx %ebx %esi %edi %esp %ebp %ax %cx %dx %bx %si %di %sp %bp %ah %ch %dh %bh %al %cl %dl %bl 16-bit virtual registers (backwards compatibility) general purpose accumulate counter data base source index destination index stack pointer base pointer Origin (mostly obsolete)

Carnegie Mellon 22 Moving Data: IA32 Moving Data movl Source, Dest: Operand Types  Immediate: Constant integer data  Example: $0x400, $-533  Like C constant, but prefixed with ‘$’  Encoded with 1, 2, or 4 bytes  Register: One of 8 integer registers  Example: %eax, %edx  But %esp and %ebp reserved for special use  Others have special uses for particular instructions  Memory: 4 consecutive bytes of memory at address given by register  Simplest example: (%eax)  Various other “address modes” %eax %ecx %edx %ebx %esi %edi %esp %ebp

Carnegie Mellon 23 movl Operand Combinations Cannot do memory-memory transfer with a single instruction movl Imm Reg Mem Reg Mem Reg Mem Reg SourceDestC Analog movl $0x4,%eaxtemp = 0x4; movl $-147,(%eax)*p = -147; movl %eax,%edxtemp2 = temp1; movl %eax,(%edx)*p = temp; movl (%eax),%edxtemp = *p; Src,Dest

Carnegie Mellon 24 Simple Memory Addressing Modes Normal(R)Mem[Reg[R]]  Register R specifies memory address movl (%ecx),%eax DisplacementD(R)Mem[Reg[R]+D]  Register R specifies start of memory region  Constant displacement D specifies offset movl 8(%ebp),%edx

Carnegie Mellon 25 Using Simple Addressing Modes void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } Body Set Up Finish swap: pushl %ebp movl %esp,%ebp pushl %ebx movl 8(%ebp), %edx movl 12(%ebp), %ecx movl (%edx), %ebx movl (%ecx), %eax movl %eax, (%edx) movl %ebx, (%ecx) popl %ebx popl %ebp ret

Carnegie Mellon 26 Using Simple Addressing Modes void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } swap: pushl %ebp movl %esp,%ebp pushl %ebx movl8(%ebp), %edx movl12(%ebp), %ecx movl(%edx), %ebx movl(%ecx), %eax movl%eax, (%edx) movl%ebx, (%ecx) popl%ebx popl%ebp ret Body Set Up Finish

Carnegie Mellon 27 Understanding Swap void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } Stack (in memory) RegisterValue %edxxp %ecxyp %ebxt0 %eaxt1 yp xp Rtn adr Old % ebp %ebp Offset Old % ebx -4 %esp movl8(%ebp), %edx# edx = xp movl12(%ebp), %ecx# ecx = yp movl(%edx), %ebx# ebx = *xp (t0) movl(%ecx), %eax# eax = *yp (t1) movl%eax, (%edx)# *xp = t1 movl%ebx, (%ecx)# *yp = t0

Carnegie Mellon 28 Understanding Swap 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp0x104 movl8(%ebp), %edx# edx = xp movl12(%ebp), %ecx# ecx = yp movl(%edx), %ebx# ebx = *xp (t0) movl(%ecx), %eax# eax = *yp (t1) movl%eax, (%edx)# *xp = t1 movl%ebx, (%ecx)# *yp = t0

Carnegie Mellon 29 Understanding Swap 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 0x124 0x104 0x120 movl8(%ebp), %edx# edx = xp movl12(%ebp), %ecx# ecx = yp movl(%edx), %ebx# ebx = *xp (t0) movl(%ecx), %eax# eax = *yp (t1) movl%eax, (%edx)# *xp = t1 movl%ebx, (%ecx)# *yp = t0

Carnegie Mellon 30 Understanding Swap 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 0x120 0x104 0x124 movl8(%ebp), %edx# edx = xp movl12(%ebp), %ecx# ecx = yp movl(%edx), %ebx# ebx = *xp (t0) movl(%ecx), %eax# eax = *yp (t1) movl%eax, (%edx)# *xp = t1 movl%ebx, (%ecx)# *yp = t0

Carnegie Mellon Understanding Swap 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 0x124 0x x104 movl8(%ebp), %edx# edx = xp movl12(%ebp), %ecx# ecx = yp movl(%edx), %ebx# ebx = *xp (t0) movl(%ecx), %eax# eax = *yp (t1) movl%eax, (%edx)# *xp = t1 movl%ebx, (%ecx)# *yp = t0

Carnegie Mellon 32 Understanding Swap 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x120 0x movl8(%ebp), %edx# edx = xp movl12(%ebp), %ecx# ecx = yp movl(%edx), %ebx# ebx = *xp (t0) movl(%ecx), %eax# eax = *yp (t1) movl%eax, (%edx)# *xp = t1 movl%ebx, (%ecx)# *yp = t0

Carnegie Mellon Understanding Swap 0x120 0x124 Rtn adr %ebp Offset -4 Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x x movl8(%ebp), %edx# edx = xp movl12(%ebp), %ecx# ecx = yp movl(%edx), %ebx# ebx = *xp (t0) movl(%ecx), %eax# eax = *yp (t1) movl%eax, (%edx)# *xp = t1 movl%ebx, (%ecx)# *yp = t0

Carnegie Mellon 34 Understanding Swap 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x120 0x movl8(%ebp), %edx# edx = xp movl12(%ebp), %ecx# ecx = yp movl(%edx), %ebx# ebx = *xp (t0) movl(%ecx), %eax# eax = *yp (t1) movl%eax, (%edx)# *xp = t1 movl%ebx, (%ecx)# *yp = t0

Carnegie Mellon 35 Complete Memory Addressing Modes Most General Form D(Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]+ D]  D: Constant “displacement” 1, 2, or 4 bytes  Rb: Base register: Any of 8 integer registers  Ri:Index register: Any, except for %esp  Unlikely you’d use %ebp, either  S: Scale: 1, 2, 4, or 8 (why these numbers?) Special Cases (Rb,Ri)Mem[Reg[Rb]+Reg[Ri]] D(Rb,Ri)Mem[Reg[Rb]+Reg[Ri]+D] (Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]]

Carnegie Mellon 36 So far! History of Intel processors and architectures  Evolutionary design leads to many quirks and artifacts C, assembly, machine code  Compiler must transform statements, expressions, procedures into low-level instruction sequences Assembly Basics: Registers, operands, move  The x86 move instructions cover wide range of data movement forms

Carnegie Mellon 37 Complete addressing mode and address computation (leal)

Carnegie Mellon 38 Data Representations: IA32 + x86-64 Sizes of C Objects (in Bytes)  C Data TypeGeneric 32-bitIntel IA32x86-64  unsigned444  int444  long int448  char111  short222  float444  double888  long double810/1216  char *448 –Or any other pointer

Carnegie Mellon 39 Complete Memory Addressing Modes Most General Form D(Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]+ D]  D: Constant “displacement” 1, 2, or 4 bytes  Rb: Base register: Any of 8 integer registers  Ri:Index register: Any, except for %esp  Unlikely you’d use %ebp, either  S: Scale: 1, 2, 4, or 8 (why these numbers?) Special Cases (Rb,Ri)Mem[Reg[Rb]+Reg[Ri]] D(Rb,Ri)Mem[Reg[Rb]+Reg[Ri]+D] (Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]]

Carnegie Mellon 40 Address Computation Examples ExpressionAddress ComputationAddress 0x8(%edx)0xf x80xf008 (%edx,%ecx)0xf x1000xf100 (%edx,%ecx,4)0xf *0x1000xf400 0x80(,%edx,2)2*0xf x800x1e080 %edx0x7000 %ecx0x0200 ExpressionAddress ComputationAddress 0x8(%edx) (%edx,%ecx) (%edx,%ecx,4) 0x80(,%edx,2)

Carnegie Mellon 41 Address Computation Instruction leal Src,Dest  Src is address mode expression  Set Dest to address denoted by expression Uses  Computing addresses without a memory reference  E.g., translation of p = &x[i];  Computing arithmetic expressions of the form x + k*y  k = 1, 2, 4, or 8 Example int mul12(int x) { return x*12; } int mul12(int x) { return x*12; } leal (%eax,%eax,2), %eax ;t <- x+x*2 sall $2, %eax ;return t<<2 leal (%eax,%eax,2), %eax ;t <- x+x*2 sall $2, %eax ;return t<<2 Converted to ASM by compiler:

Carnegie Mellon 42 Arithmetic operations

Carnegie Mellon 43 Some Arithmetic Operations Two Operand Instructions: FormatComputation addl Src,DestDest = Dest + Src subl Src,DestDest = Dest  Src imull Src,DestDest = Dest * Src sall Src,DestDest = Dest << SrcAlso called shll sarl Src,DestDest = Dest >> SrcArithmetic shrl Src,DestDest = Dest >> SrcLogical xorl Src,DestDest = Dest ^ Src andl Src,DestDest = Dest & Src orl Src,DestDest = Dest | Src Watch out for argument order! No distinction between signed and unsigned int (why?)

Carnegie Mellon 44 Some Arithmetic Operations One Operand Instructions incl DestDest = Dest + 1 decl DestDest = Dest  1 negl DestDest =  Dest notl DestDest = ~Dest See the chapter from CSAPP for more instructions

Carnegie Mellon 45 Arithmetic Expression Example int arith(int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } int arith(int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } arith: pushl%ebp movl%esp, %ebp movl8(%ebp), %ecx movl12(%ebp), %edx leal(%edx,%edx,2), %eax sall$4, %eax leal4(%ecx,%eax), %eax addl%ecx, %edx addl16(%ebp), %edx imull%edx, %eax popl%ebp ret Body Set Up Finish

Carnegie Mellon 46 16z 12y 8x 4Rtn Addr 0Old %ebp Understanding arith movl8(%ebp), %ecx movl12(%ebp), %edx leal(%edx,%edx,2), %eax sall$4, %eax leal4(%ecx,%eax), %eax addl%ecx, %edx addl16(%ebp), %edx imull%edx, %eax %ebp Offset int arith(int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } int arith(int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; }

Carnegie Mellon 47 16z 12y 8x 4Rtn Addr 0Old %ebp Understanding arith %ebp Offset Stack int arith(int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } int arith(int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } movl8(%ebp), %ecx# ecx = x movl12(%ebp), %edx# edx = y leal(%edx,%edx,2), %eax# eax = y*3 sall$4, %eax# eax *= 16 (t4) leal4(%ecx,%eax), %eax# eax = t4 +x+4 (t5) addl%ecx, %edx# edx = x+y (t1) addl16(%ebp), %edx# edx += z (t2) imull%edx, %eax# eax = t2 * t5 (rval)

Carnegie Mellon 48 Observations about arith  Instructions in different order from C code  Some expressions require multiple instructions  Some instructions cover multiple expressions  Get exact same code when compile:  (x+y+z)*(x+4+48*y) movl8(%ebp), %ecx# ecx = x movl12(%ebp), %edx# edx = y leal(%edx,%edx,2), %eax# eax = y*3 sall$4, %eax# eax *= 16 (t4) leal4(%ecx,%eax), %eax# eax = t4 +x+4 (t5) addl%ecx, %edx# edx = x+y (t1) addl16(%ebp), %edx# edx += z (t2) imull%edx, %eax# eax = t2 * t5 (rval) int arith(int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } int arith(int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; }

Carnegie Mellon 49 Another Example int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } logical: pushl %ebp movl %esp,%ebp movl 12(%ebp),%eax xorl 8(%ebp),%eax sarl $17,%eax andl $8185,%eax popl %ebp ret Body Set Up Finish movl 12(%ebp),%eax# eax = y xorl 8(%ebp),%eax# eax = x^y (t1) sarl $17,%eax# eax = t1>>17 (t2) andl $8185,%eax# eax = t2 & mask (rval)

Carnegie Mellon 50 Another Example int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } logical: pushl %ebp movl %esp,%ebp movl 12(%ebp),%eax xorl 8(%ebp),%eax sarl $17,%eax andl $8185,%eax popl %ebp ret Body Set Up Finish movl 12(%ebp),%eax# eax = y xorl 8(%ebp),%eax# eax = x^y (t1) sarl $17,%eax# eax = t1>>17 (t2) andl $8185,%eax# eax = t2 & mask (rval)

Carnegie Mellon 51 Another Example int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } logical: pushl %ebp movl %esp,%ebp movl 12(%ebp),%eax xorl 8(%ebp),%eax sarl $17,%eax andl $8185,%eax popl %ebp ret Body Set Up Finish movl 12(%ebp),%eax# eax = y xorl 8(%ebp),%eax# eax = x^y (t1) sarl $17,%eax# eax = t1>>17 (t2) andl $8185,%eax# eax = t2 & mask (rval)

Carnegie Mellon 52 Another Example int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } logical: pushl %ebp movl %esp,%ebp movl 12(%ebp),%eax xorl 8(%ebp),%eax sarl $17,%eax andl $8185,%eax popl %ebp ret Body Set Up Finish movl 12(%ebp),%eax# eax = y xorl 8(%ebp),%eax# eax = x^y (t1) sarl $17,%eax# eax = t1>>17 (t2) andl $8185,%eax# eax = t2 & mask (rval) 2 13 = 8192, 2 13 – 7 = 8185

53 Control: Conditon codes

54 Processor State (IA32, Partial) Information about currently executing program  Temporary data ( %eax, … )  Location of runtime stack ( %ebp, %esp )  Location of current code control point ( %eip, … )  Status of recent tests ( CF, ZF, SF, OF ) %eip General purpose registers Current stack top Current stack frame Instruction pointer CFZFSFOF Condition codes %eax %ecx %edx %ebx %esi %edi %esp %ebp

55 Condition Codes (Implicit Setting) Single bit registers  CF Carry Flag (for unsigned)SF Sign Flag (for signed)  ZF Zero FlagOF Overflow Flag (for signed) Implicitly set (think of it as side effect) by arithmetic operations Example: addl/addq Src,Dest ↔ t = a+b CF set if carry out from most significant bit (unsigned overflow) ZF set if t == 0 SF set if t < 0 (as signed) OF set if two’s-complement (signed) overflow (a>0 && b>0 && t =0) Not set by lea instruction

56 Condition Codes (Explicit Setting: Compare) Explicit Setting by Compare Instruction  cmpl Src2, Src1  cmpl b,a like computing a-b without setting destination  CF set if carry out from most significant bit (used for unsigned comparisons)  ZF set if a == b  SF set if (a-b) < 0 (as signed)  OF set if two’s-complement (signed) overflow (a>0 && b 0 && (a-b)>0)

57 Condition Codes (Explicit Setting: Test) Explicit Setting by Test instruction  testl Src2, Src1 testl b,a like computing a&b without setting destination  Sets condition codes based on value of Src1 & Src2  Useful to have one of the operands be a mask  ZF set when a&b == 0  SF set when a&b < 0

58 Reading Condition Codes SetX Instructions  Set single byte based on combinations of condition codes SetXConditionDescription seteZF Equal / Zero setne~ZF Not Equal / Not Zero setsSF Negative setns~SF Nonnegative setg~(SF^OF)&~ZF Greater (Signed) setge~(SF^OF) Greater or Equal (Signed) setl(SF^OF) Less (Signed) setle(SF^OF)|ZF Less or Equal (Signed) seta~CF&~ZF Above (unsigned) setbCF Below (unsigned)

59 movl 12(%ebp),%eax# eax = y cmpl %eax,8(%ebp)# Compare x : y setg %al# al = x > y movzbl %al,%eax# Zero rest of %eax Reading Condition Codes (Cont.) SetX Instructions:  Set single byte based on combination of condition codes One of 8 addressable byte registers  Does not alter remaining 3 bytes  Typically use movzbl to finish job int gt (int x, int y) { return x > y; } int gt (int x, int y) { return x > y; } Body %eax%ah%al %ecx%ch%cl %edx%dh%dl %ebx%bh%bl %esi %edi %esp %ebp

60 Conditional branches and moves

61 Carnegie Mellon Jumping jX Instructions  Jump to different part of code depending on condition codes jXConditionDescription jmp1 Unconditional jeZF Equal / Zero jne~ZF Not Equal / Not Zero jsSF Negative jns~SF Nonnegative jg~(SF^OF)&~ZF Greater (Signed) jge~(SF^OF) Greater or Equal (Signed) jl(SF^OF) Less (Signed) jle(SF^OF)|ZF Less or Equal (Signed) ja~CF&~ZF Above (unsigned) jbCF Below (unsigned)

62 Carnegie Mellon Conditional Branch Example int absdiff(int x, int y) { int result; if (x > y) { result = x-y; } else { result = y-x; } return result; } int absdiff(int x, int y) { int result; if (x > y) { result = x-y; } else { result = y-x; } return result; } absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.L6 subl %eax, %edx movl %edx, %eax jmp.L7.L6: subl %edx, %eax.L7: popl %ebp ret Body1 Setup Finish Body2b Body2a

63 Carnegie Mellon Conditional Branch Example (Cont.) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; goto Exit; Else: result = y-x; Exit: return result; } int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; goto Exit; Else: result = y-x; Exit: return result; } C allows “goto” as means of transferring control  Closer to machine-level programming style Generally considered bad coding style absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.L6 subl %eax, %edx movl %edx, %eax jmp.L7.L6: subl %edx, %eax.L7: popl %ebp ret Body1 Setup Finish Body2b Body2a

64 Carnegie Mellon Conditional Branch Example (Cont.) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; goto Exit; Else: result = y-x; Exit: return result; } int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; goto Exit; Else: result = y-x; Exit: return result; } absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.L6 subl %eax, %edx movl %edx, %eax jmp.L7.L6: subl %edx, %eax.L7: popl %ebp ret Body1 Setup Finish Body2b Body2a

65 Carnegie Mellon Conditional Branch Example (Cont.) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; goto Exit; Else: result = y-x; Exit: return result; } int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; goto Exit; Else: result = y-x; Exit: return result; } absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.L6 subl %eax, %edx movl %edx, %eax jmp.L7.L6: subl %edx, %eax.L7: popl %ebp ret Body1 Setup Finish Body2b Body2a

66 Carnegie Mellon Conditional Branch Example (Cont.) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; goto Exit; Else: result = y-x; Exit: return result; } int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; goto Exit; Else: result = y-x; Exit: return result; } absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.L6 subl %eax, %edx movl %edx, %eax jmp.L7.L6: subl %edx, %eax.L7: popl %ebp ret Body1 Setup Finish Body2b Body2a

67 Carnegie Mellon Loops

68 Carnegie Mellon C Code int pcount_do(unsigned x) { int result = 0; do { result += x & 0x1; x >>= 1; } while (x); return result; } int pcount_do(unsigned x) { int result = 0; do { result += x & 0x1; x >>= 1; } while (x); return result; } Goto Version int pcount_do(unsigned x) { int result = 0; loop: result += x & 0x1; x >>= 1; if (x) goto loop; return result; } int pcount_do(unsigned x) { int result = 0; loop: result += x & 0x1; x >>= 1; if (x) goto loop; return result; } “Do-While” Loop Example Count number of 1’s in argument x (“popcount”) Use conditional branch to either continue looping or to exit loop

69 Carnegie Mellon Goto Version “Do-While” Loop Compilation Registers: %edxx %ecxresult movl$0, %ecx# result = 0.L2:# loop: movl%edx, %eax andl$1, %eax# t = x & 1 addl%eax, %ecx# result += t shrl%edx# x >>= 1 jne.L2# If !0, goto loop int pcount_do(unsigned x) { int result = 0; loop: result += x & 0x1; x >>= 1; if (x) goto loop; return result; } int pcount_do(unsigned x) { int result = 0; loop: result += x & 0x1; x >>= 1; if (x) goto loop; return result; }

70 Carnegie Mellon C Code do Body while ( Test ); do Body while ( Test ); Goto Version loop: Body if ( Test ) goto loop loop: Body if ( Test ) goto loop General “Do-While” Translation Body: Test returns integer  = 0 interpreted as false  ≠ 0 interpreted as true { Statement 1 ; Statement 2 ; … Statement n ; }

71 Carnegie Mellon C CodeGoto Version “While” Loop Example Is this code equivalent to the do-while version?  Must jump out of loop if test fails int pcount_while(unsigned x) { int result = 0; while (x) { result += x & 0x1; x >>= 1; } return result; } int pcount_while(unsigned x) { int result = 0; while (x) { result += x & 0x1; x >>= 1; } return result; } int pcount_do(unsigned x) { int result = 0; if (!x) goto done; loop: result += x & 0x1; x >>= 1; if (x) goto loop; done: return result; } int pcount_do(unsigned x) { int result = 0; if (!x) goto done; loop: result += x & 0x1; x >>= 1; if (x) goto loop; done: return result; }

72 Carnegie Mellon While version while ( Test ) Body while ( Test ) Body Do-While Version if (! Test ) goto done; do Body while( Test ); done: if (! Test ) goto done; do Body while( Test ); done: General “While” Translation Goto Version if (! Test ) goto done; loop: Body if ( Test ) goto loop; done: if (! Test ) goto done; loop: Body if ( Test ) goto loop; done:

73 Carnegie Mellon C Code “For” Loop Example Is this code equivalent to other versions? #define WSIZE 8*sizeof(int) int pcount_for(unsigned x) { int i; int result = 0; for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } return result; } #define WSIZE 8*sizeof(int) int pcount_for(unsigned x) { int i; int result = 0; for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } return result; }

74 Carnegie Mellon “For” Loop Form for ( Init ; Test ; Update ) Body General Form for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } i = 0 i < WSIZE i++ { unsigned mask = 1 << i; result += (x & mask) != 0; } { unsigned mask = 1 << i; result += (x & mask) != 0; } Init Test Update Body

75 Carnegie Mellon “For” Loop  While Loop for ( Init ; Test ; Update ) Body For Version Init ; while ( Test ) { Body Update ; } While Version

76 Carnegie Mellon “For” Loop  …  Goto for ( Init ; Test ; Update ) Body For Version Init ; while ( Test ) { Body Update ; } While Version Init ; if (! Test ) goto done; do Body Update while( Test ); done: Init ; if (! Test ) goto done; do Body Update while( Test ); done: Init ; if (! Test ) goto done; loop: Body Update if ( Test ) goto loop; done: Init ; if (! Test ) goto done; loop: Body Update if ( Test ) goto loop; done:

77 Carnegie Mellon C Code “For” Loop Conversion Example Initial test can be optimized away #define WSIZE 8*sizeof(int) int pcount_for(unsigned x) { int i; int result = 0; for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } return result; } #define WSIZE 8*sizeof(int) int pcount_for(unsigned x) { int i; int result = 0; for (i = 0; i < WSIZE; i++) { unsigned mask = 1 << i; result += (x & mask) != 0; } return result; } Goto Version int pcount_for_gt(unsigned x) { int i; int result = 0; i = 0; if (!(i < WSIZE)) goto done; loop: { unsigned mask = 1 << i; result += (x & mask) != 0; } i++; if (i < WSIZE) goto loop; done: return result; } int pcount_for_gt(unsigned x) { int i; int result = 0; i = 0; if (!(i < WSIZE)) goto done; loop: { unsigned mask = 1 << i; result += (x & mask) != 0; } i++; if (i < WSIZE) goto loop; done: return result; } Init ! Test Body Update Test

78 Carnegie Mellon Summary So far  Complete addressing mode, address computation ( leal )  Arithmetic operations  Control: Condition codes  Conditional branches & conditional moves  Loops Coming up!  Switch statements  Stack  Call / return  Procedure call discipline

79 Carnegie Mellon Today Switch statements IA 32 Procedures  Stack Structure  Calling Conventions  Illustrations of Recursion & Pointers

80 Carnegie Mellon IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Register %esp contains lowest stack address  address of “top” element Stack Pointer: %esp Stack Grows Down Increasing Addresses Stack “Top” Stack “Bottom”

81 Carnegie Mellon IA32 Stack: Push pushl Src  Fetch operand at Src  Decrement %esp by 4  Write operand at address given by %esp -4 Stack Grows Down Increasing Addresses Stack “Bottom” Stack Pointer: %esp Stack “Top”

82 Stack Pointer: %esp Stack Grows Down Increasing Addresses Stack “Top” Stack “Bottom” Carnegie Mellon IA32 Stack: Pop +4

83 Carnegie Mellon Procedure Control Flow Use stack to support procedure call and return Procedure call: call label  Push return address on stack  Jump to label Return address:  Address of the next instruction right after call  Example from disassembly e:e8 3d call 8048b :50 pushl %eax  Return address = 0x Procedure return: ret  Pop address from stack  Jump to address

84 0x x104 Carnegie Mellon %esp %eip %esp %eip 0x8048b90 0x108 0x10c 0x110 0x104 0x804854e 123 Procedure Call Example 0x108 0x10c 0x x108 call 8048b e:e8 3d call 8048b :50 pushl %eax e:e8 3d call 8048b :50 pushl %eax %eip: program counter

85 Carnegie Mellon %esp %eip 0x104 %esp %eip 0x x104 0x108 0x10c 0x110 0x Procedure Return Example 0x108 0x10c 0x ret :c3 ret 0x108 0x %eip: program counter

86 Carnegie Mellon Stack-Based Languages Languages that support recursion  e.g., C, Pascal, Java  Code must be “Reentrant”  Multiple simultaneous instantiations of single procedure  Need some place to store state of each instantiation  Arguments  Local variables  Return pointer Stack discipline  State for given procedure needed for limited time  From when called to when return  Callee returns before caller does Stack allocated in Frames  state for single procedure instantiation

87 Carnegie Mellon Call Chain Example yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); } amI(…) { amI(); } amI(…) { amI(); } yoo who amI Example Call Chain amI Procedure amI() is recursive

88 Carnegie Mellon Frame Pointer: %ebp Stack Frames Contents  Local variables  Return information  Temporary space Management  Space allocated when enter procedure  “Set-up” code  Deallocated when return  “Finish” code Stack Pointer: %esp Stack “Top” Previous Frame Frame for proc

89 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo yoo(…) { who(); } yoo(…) { who(); }

90 yoo(…) { who(); } yoo(…) { who(); } Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who who(…) { amI(); amI(); } who(…) { amI(); amI(); }

91 yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); } Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who amI amI(…) { amI(); } amI(…) { amI(); }

92 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who amI yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); }

93 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who amI yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); }

94 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who amI yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); }

95 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who amI yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); } amI(…) { amI(); } amI(…) { amI(); }

96 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); }

97 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who amI yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); } amI(…) { amI(); } amI(…) { amI(); }

98 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo who yoo(…) { who(); } yoo(…) { who(); } who(…) { amI(); amI(); } who(…) { amI(); amI(); }

99 Carnegie Mellon Example yoo who amI yoo %ebp %esp Stack yoo yoo(…) { who(); } yoo(…) { who(); }

100 Carnegie Mellon IA32/Linux Stack Frame Current Stack Frame (“Top” to Bottom)  “Argument build:” Parameters for function about to call  Local variables If can’t keep in registers  Saved register context  Old frame pointer Caller Stack Frame  Return address  Pushed by call instruction  Arguments for this call Return Addr Saved Registers + Local Variables Argument Build Old %ebp Arguments Caller Frame Frame pointer %ebp Stack pointer %esp

101 Carnegie Mellon Revisiting swap void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } int course1 = 15213; int course2 = 18243; void call_swap() { swap(&course1, &course2); } int course1 = 15213; int course2 = 18243; void call_swap() { swap(&course1, &course2); } call_swap: subl$8, %esp movl$course2, 4(%esp) movl$course1, (%esp) callswap call_swap: subl$8, %esp movl$course2, 4(%esp) movl$course1, (%esp) callswap &course2 &course1 Rtn adr %esp Resulting Stack Calling swap from call_swap %esp subl call

102 Carnegie Mellon Revisiting swap void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } swap: pushl%ebp movl%esp, %ebp pushl%ebx movl8(%ebp), %edx movl12(%ebp), %ecx movl(%edx), %ebx movl(%ecx), %eax movl%eax, (%edx) movl%ebx, (%ecx) popl%ebx popl%ebp ret Body Set Up Finish

103 Carnegie Mellon swap Setup #1 swap: pushl %ebp movl %esp,%ebp pushl %ebx Resulting Stack &course2 &course1 Rtn adr %esp Entering Stack %ebp yp xp Rtn adr Old %ebp %ebp %esp

104 Carnegie Mellon swap Setup #2 swap: pushl %ebp movl %esp,%ebp pushl %ebx Resulting Stack &course2 &course1 Rtn adr %esp Entering Stack %ebp yp xp Rtn adr Old %ebp %ebp %esp

105 Carnegie Mellon swap Setup #3 swap: pushl %ebp movl %esp,%ebp pushl %ebx Resulting Stack &course2 &course1 Rtn adr %esp Entering Stack %ebp yp xp Rtn adr Old %ebp %ebp %esp Old %ebx

106 Carnegie Mellon swap Body movl 8(%ebp),%edx # get xp movl 12(%ebp),%ecx # get yp... Resulting Stack &course2 &course1 Rtn adr %esp Entering Stack %ebp yp xp Rtn adr Old %ebp %ebp %esp Old %ebx Offset relative to %ebp

107 Carnegie Mellon swap Finish Stack Before Finish popl%ebx popl%ebp yp xp Rtn adr Old %ebp %ebp %esp Old %ebx Resulting Stack yp xp Rtn adr %ebp %esp Observation  Saved and restored register %ebx  Not so for %eax, %ecx, %edx

108 Carnegie Mellon Disassembled swap : :55 push %ebp :89 e5 mov %esp,%ebp :53 push %ebx :8b mov 0x8(%ebp),%edx b:8b 4d 0c mov 0xc(%ebp),%ecx e:8b 1a mov (%edx),%ebx :8b 01 mov (%ecx),%eax :89 02 mov %eax,(%edx) :89 19 mov %ebx,(%ecx) :5b pop %ebx :5d pop %ebp :c3 ret 80483b4:movl $0x ,0x4(%esp)# Copy &course bc:movl $0x ,(%esp)# Copy &course c3:call # Call swap 80483c8:leave # Prepare to return 80483c9:ret # Return Calling Code

109 Carnegie Mellon IA32/Linux+Windows Register Usage %eax, %edx, %ecx  Caller saves prior to call if values are used later %eax  also used to return integer value %ebx, %esi, %edi  Callee saves if wants to use them %esp, %ebp  special form of callee save  Restored to original values upon exit from procedure %eax %edx %ecx %ebx %esi %edi %esp %ebp Caller-Save Temporaries Callee-Save Temporaries Special

110 Carnegie Mellon So far IA 32 Procedures  Stack Structure  Calling Conventions  Illustrations of Recursion & Pointers

111 Carnegie Mellon %esp Creating and Initializing Local Variable int add3(int x) { int localx = x; incrk(&localx, 3); return localx; } int add3(int x) { int localx = x; incrk(&localx, 3); return localx; } Variable localx must be stored on stack  Because: Need to create pointer to it Compute pointer as -4(%ebp) First part of add3 x Rtn adr Old %ebp %ebp localx = x Unused add3: pushl%ebp movl%esp, %ebp subl$24, %esp# Alloc. 24 bytes movl8(%ebp), %eax movl%eax, -4(%ebp)# Set localx to x add3: pushl%ebp movl%esp, %ebp subl$24, %esp# Alloc. 24 bytes movl8(%ebp), %eax movl%eax, -4(%ebp)# Set localx to x

112 Carnegie Mellon %esp Creating Pointer as Argument int add3(int x) { int localx = x; incrk(&localx, 3); return localx; } int add3(int x) { int localx = x; incrk(&localx, 3); return localx; } Use leal instruction to compute address of localx Middle part of add3 x Rtn adr Old %ebp %ebp localx Unused movl$3, 4(%esp)# 2 nd arg = 3 leal-4(%ebp), %eax# &localx movl%eax, (%esp) # 1 st arg = &localx callincrk movl$3, 4(%esp)# 2 nd arg = 3 leal-4(%ebp), %eax# &localx movl%eax, (%esp) # 1 st arg = &localx callincrk %esp+4

113 Carnegie Mellon %esp Retrieving local variable int add3(int x) { int localx = x; incrk(&localx, 3); return localx; } int add3(int x) { int localx = x; incrk(&localx, 3); return localx; } Retrieve localx from stack as return value Final part of add3 x Rtn adr Old %ebp %ebp localx Unused movl-4(%ebp), %eax # Return val= localx leave ret movl-4(%ebp), %eax # Return val= localx leave ret

114 Carnegie Mellon IA32/Linux+Windows Register Usage %eax, %edx, %ecx  Caller saves prior to call if values are used later %eax  also used to return integer value %ebx, %esi, %edi  Callee saves if wants to use them %esp, %ebp  special form of callee save  Restored to original values upon exit from procedure %eax %edx %ecx %ebx %esi %edi %esp %ebp Caller-Save Temporaries Callee-Save Temporaries Special

115 Carnegie Mellon Today Switch statements IA 32 Procedures  Stack Structure  Calling Conventions  Illustrations of Recursion & Pointers

Carnegie Mellon 116 Basic Data Types Integral  Stored & operated on in general (integer) registers  Signed vs. unsigned depends on instructions used IntelASMBytesC byte b 1[ unsigned ] char word w 2[ unsigned ] short double word l 4[ unsigned ] int quad word q 8[ unsigned ] long int (x86-64) Floating Point  Stored & operated on in floating point registers IntelASMBytesC Single s 4 float Double l 8 double Extended t 10/12/16 long double

Carnegie Mellon 117 Array Allocation Basic Principle T A[ L ];  Array of data type T and length L  Contiguously allocated region of L * sizeof( T ) bytes char string[12]; xx + 12 int val[5]; x x + 4x + 8x + 12x + 16x + 20 double a[3]; x + 24 x x + 8x + 16 char *p[3]; x x + 8x + 16 x + 24 x x + 4x + 8x + 12 IA32 x86-64

Carnegie Mellon 118 Array Access Basic Principle T A[ L ];  Array of data type T and length L  Identifier A can be used as a pointer to array element 0: Type T* ReferenceTypeValue val[4]int 3 valint * x val+1int * x + 4 &val[2]int * x + 8 val[5]int ?? *(val+1)int 5 val + i int * x + 4 i int val[5]; x x + 4x + 8x + 12x + 16x + 20

Carnegie Mellon 119 Array Example Declaration “ zip_dig cmu ” equivalent to “ int cmu[5] ” Example arrays were allocated in successive 20 byte blocks  Not guaranteed to happen in general #define ZLEN 5 typedef int zip_dig[ZLEN]; zip_dig cmu = { 1, 5, 2, 1, 3 }; zip_dig mit = { 0, 2, 1, 3, 9 }; zip_dig ucb = { 9, 4, 7, 2, 0 }; zip_dig cmu; zip_dig mit; zip_dig ucb;

Carnegie Mellon 120 Array Accessing Example Register %edx contains starting address of array Register %eax contains array index Desired digit at 4*%eax + %edx Use memory reference (%edx,%eax,4) int get_digit (zip_dig z, int dig) { return z[dig]; } # %edx = z # %eax = dig movl (%edx,%eax,4),%eax # z[dig] IA32 zip_dig cmu;

Carnegie Mellon 121 # edx = z movl$0, %eax# %eax = i.L4:# loop: addl$1, (%edx,%eax,4)# z[i]++ addl$1, %eax# i++ cmpl$5, %eax# i:5 jne.L4# if !=, goto loop Array Loop Example (IA32) void zincr(zip_dig z) { int i; for (i = 0; i < ZLEN; i++) z[i]++; }

Carnegie Mellon 122 Pointer Loop Example (IA32) void zincr_p(zip_dig z) { int *zend = z+ZLEN; do { (*z)++; z++; } while (z != zend); } void zincr_v(zip_dig z) { void *vz = z; int i = 0; do { (*((int *) (vz+i)))++; i += ISIZE; } while (i != ISIZE*ZLEN); } # edx = z = vz movl$0, %eax# i = 0.L8:# loop: addl$1, (%edx,%eax)# Increment vz+i addl$4, %eax# i += 4 cmpl$20, %eax# Compare i:20 jne.L8# if !=, goto loop