Intelligent Database Systems Lab Presenter : JHOU, YU-LIANG Authors :Shady Shehata, Fakhri Karray, Mohamed S. Kamel, Fellow 2012, IEEE An Efficient Concept-Based.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : KADIM TA¸SDEMIR, PAVEL MILENOV, AND BROOKE TAPSALL 2011,IEEE Topology-Based Hierarchical.
Advertisements

Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Harun Ug˘uz 2011.KBS A two-stage feature selection method for text categorization by.
Intelligent Database Systems Lab Presenter: WU, JHEN-WEI Authors: Jorge Gorricha, Victor Lobo CG Improvements on the visualization of clusters in.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : Christos Ferles ∗, Andreas Stafylopatis NN Self-Organizing Hidden Markov Model.
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: G. PANKAJ JAIN, VARADRAJ P. GURUPUR, JENNIFER L. SCHROEDER, AND EILEEN D. FAULKENBERRY.
Introduction to Data Mining Engineering Group in ACL.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An Efficient Concept-Based Mining Model for Enhancing.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Liang-Chu Chen, Ting-Jung Yu, Chia-Jung Hsieh ACM KeyGraph-based chance discovery.
Intelligent Database Systems Lab Presenter: MIN-CHIEH HSIU Authors: NHAT-QUANG DOAN ∗, HANANE AZZAG, MUSTAPHA LEBBAH 2013 NN Growing self-organizing trees.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Shih-Hwa Liu*,Gwo-Guang Lee 2013.CE Using a concept map knowledge management system.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : JEROEN DE KNIJFF, FLAVIUS FRASINCAR, FREDERIK HOGENBOOM DKE Data & Knowledge.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Evaluation of novelty metrics for sentence-level novelty mining Presenter : Lin, Shu-Han Authors : Flora.
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : Jorge Villalon and Rafael A. Calvo 2011, EST Concept Maps as Cognitive Visualizations.
Intelligent Database Systems Lab Presenter: WU, MIN-CONG Authors: Yongzheng Zhang, Rajyashree Mukherjee, Benny Soetarman 2012, ACM Concept Extraction for.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Mining Positive and Negative Patterns for Relevance Feature.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Comprehensive Comparison Study of Document Clustering.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Miin-Shen Yang a*, Wen-Liang Hung b, De-Hua Chen a 2012, FSS Self-organizing map.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Sheng-Tun Li a,b,*, Fu-Ching Tsai a 2013, KBS A fuzzy conceptualization model for.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Determining the best K for clustering transactional datasets – A coverage density-based approach Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A semantic similarity metric combining features and intrinsic information content Presenter: Chun-Ping.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Cube Kohonen Self-Organizing Map (CKSOM) Model
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Youngjoong Ko, Jungyun Seo 2009, IPM Text classification from unlabeled documents.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
1 Mining the Web to Determine Similarity Between Words, Objects, and Communities Author : Mehran Sahami Reporter : Tse Ho Lin 2007/9/10 FLAIRS, 2006.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Medhdi Khashei, Mehdi Bijari 2011, ASOC A novel hybridization of artificial neural.
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : GUENAEL CABANES, YOUNES BENNANI, DOMINIQUE FRESNEAU ELSEVIER Improving the Quality.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Externally growing self-organizing maps and its application to database visualization and exploration.
Intelligent Database Systems Lab Presenter: Wu, Jhen-Wei Authors: Fabian Bürger, Josef Pauli ICPRAM. Representation Optimization with Feature Selection.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : CHRISTOS BOURAS, VASSILIS TSOGKAS 2012, KBS A clustering technique for news articles.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : David Milne *, Ian H. Witten 2012, AI An open-source toolkit for mining Wikipedia.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Bui Quang Hung, Masanori Otsubo, Yoshinori Hijikata, Shogo Nishida 2010.WIA. HITS.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Eghbal G. Mansoori 2011,IEEE FRBC: A Fuzzy Rule-Based Clustering Algorithm.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Mining massive document collections by the WEBSOM method Presenter : Yu-hui Huang Authors :Krista Lagus,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Enhanced neural gas network for prototype-based clustering.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Wen Zhang, Taketoshi Yoshida, Xijin Tang 2011.ESWA A comparative study of TF*IDF,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Validity index for clusters of different sizes and densities Presenter: Jun-Yi Wu Authors: Krista Rizman.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Longzhuang Li, Yi Shang, Wei Zhang 2002.ACM. Improvement of HITS-based Algorithms.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Mining knowledge from natural language texts using fuzzy associated concept mapping Presenter : Wu,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Identifying Domain Expertise of Developers from Source Code Presenter : Wu, Jia-Hao Authors : Renuka.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : MARCO PIASTRA NN Self-organizing adaptive map: Autonomous learning of curves.
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: HUAN LONG A, ZIJUN ZHANG A, ⇑, YAN SU 2014, APPLIED ENERGY Analysis of daily solar.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Christopher C. Yang and Tobun Dorbin Ng TSMCA Analyzing and Visualizing Web Opinion.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Community self-Organizing Map and its Application to Data Extraction Presenter: Chun-Ping Wu Authors:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Discovering Interesting Usage Patterns in Text Collections:
Intelligent Database Systems Lab Presenter : JHOU, YU-LIANG Authors : Jae Hwa Lee, Aviv Segev 2012 CE Knowledge maps for e-learning.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Junping Zhang, Hua Huang and Jue Wang IEEE INTELLIGENT SYSTEMS Manifold Learning.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Vittorio Carlei, Massimiliano Nuccio PRL Mapping industrial patterns in spatial agglomeration:
Intelligent Database Systems Lab Presenter : Fen-Rou Ciou Authors : Hamdy K. Elminir, Yosry A. Azzam, Farag I. Younes 2007,ENERGY Prediction of hourly.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Emilio Corchado, Bruno Baruque 2012 NeurCom WeVoS-ViSOM: An ensemble summarization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Hsin-Chang Yang, Han-Wei Hsiao, Chung-Hong Lee IPM Multilingual document mining.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Adaptive Clustering for Multiple Evolving Streams Graduate.
NTNU Speech Lab 1 Topic Themes for Multi-Document Summarization Sanda Harabagiu and Finley Lacatusu Language Computer Corporation Presented by Yi-Ting.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Chun Fu Lin, Yu-chu Yeh, Yu Hsin Hung, Ray I Chang 2013.CE. Data mining for providing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Enhancing Text Clustering by Leveraging Wikipedia Semantics.
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : JAMAL A. NASIR, IRAKLIS VARLAMIS, ASIM KARIM, GEORGE TSATSARONIS KNOWLEDGE-BASED.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Yong-Bin Kang, Pari Delir Haghighi, Frada Burstein ESA CFinder: An intelligent key.
Arabic Text Categorization Based on Arabic Wikipedia
Using lexical chains for keyword extraction
Motivation and Background
Motivation and Background
Presentation transcript:

Intelligent Database Systems Lab Presenter : JHOU, YU-LIANG Authors :Shady Shehata, Fakhri Karray, Mohamed S. Kamel, Fellow 2012, IEEE An Efficient Concept-Based Mining Model for Enhancing Text Clustering

Intelligent Database Systems Lab Outlines Motivation Objectives Methodology Evaluation Conclusions Comments

Intelligent Database Systems Lab Motivation In text mining,the term frequency is computed to explore the importance of the term in document. However, two terms can have the same frequency in documents, but one term contributes more to the meaning of its sentences than the other term.

Intelligent Database Systems Lab Objectives Using Concept-Based Mining Model for Text Clustering, improve the clustering quality.

Intelligent Database Systems Lab Methodology Concept-Based Mining Model

Intelligent Database Systems Lab Methodology CONCEPT-BASED MINING MODEL Ex: a concept c which appears twice in document d in the first and the second sentences The concept c appears five times in the verb argument structures of the first sentence s 1, and three times in the verb argument structures of the second sentence s 2. ans : ctf value = (5+3)/2=4

Intelligent Database Systems Lab Methodology Corpus-Based Concept Analysis Algorithm

Intelligent Database Systems Lab Methodology Example of Conceptual Term Frequency. [ARG0 Texas and Australia researchers] have [TARGET created] [ARG1 industry-ready sheets of materials made from nanotubes that could lead to the development of artificial muscles]. [ARG1 materials] [TARGET made ] [ARG2 from nanotubes that could lead to the development of artificial muscles]. [ARG1 nanotubes] [R-ARG1 that] [ARGM-MOD could] [TARGET lead] [ARG2 to the development of artificial muscles].

Intelligent Database Systems Lab Methodology Example of Conceptual Term Frequency 1. First verb argument structure for the verb created:. [ARG0 Texas and Australia researchers]. [TARGET created]. [ARG1 industry-ready sheets of materials made from nanotubes that could lead to the development of artificial muscles]. 2. Second verb argument structure for the verb made:. [ARG1 materials]. [TARGET made]. [ARG2 from nanotubes that could lead to the development of artificial muscles]. 3. Third verb argument structure for the verb lead:. [ARG1 nanotubes]. [R-ARG1 that]. [ARGM-MOD could]. [TARGET lead]. [ARG2 to the development of artificial muscles].

Intelligent Database Systems Lab Methodology Example of Conceptual Term Frequency 1. Concepts in the first verb argument structure of the verb created:. Texas Australia researchers. created. industry-ready sheets materials nanotubes lead development artificial muscles 2. Concepts in the second verb argument structure of the verb made:. materials. nanotubes lead development artificial muscles 3. Concepts in the third verb argument structure of the verb lead:. nanotubes. lead. development artificial muscles.

Intelligent Database Systems Lab Methodology Example of Conceptual Term Frequency

Intelligent Database Systems Lab Methodology Concept-Based Similarity Measure

Intelligent Database Systems Lab Experimental Result

Intelligent Database Systems Lab Experimental Result

Intelligent Database Systems Lab Experimental Result

Intelligent Database Systems Lab Experimental Result

Intelligent Database Systems Lab Conclusions The new approach enhance text clustering quality.

Intelligent Database Systems Lab Comments Advantages Improve the text clustering quality. Applications -Concept-based mining model -Conceptual term frequency