Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.

Slides:



Advertisements
Similar presentations
New hardware and setups New short pulse regime Experimental results TW power Future plans on laser development ATF CO 2 LASER progress Vitaly Yakimenko.
Advertisements

CO 2 laser system M. Polyanskiy, I. Pogorelsky, M. Babzien, and V. Yakimenko.
Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
~1m undulator IP Pol. e + source based on Compton scattering with FEL & 4 mirror cavity Low energy electron beam Gamma-ray FEL photon beam LCWS2014 in.
Compton based Polarized Positrons Source for ILC V. Yakimenko, I. Pogorelsky BNL Collaboration meeting, Beijing, January 29-February1, 2006.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
Baseline Configuration - Highlights Barry Barish ILCSC 9-Feb-06.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
Compton Linac for Polarized Positrons V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009.
Demonstration of the Beam loading compensation (Preparation status for ILC beam loading compensation experiments at ATF injector in this September) (PoP.
Conventional Source for ILC (300Hz Linac scheme and the cost) Junji Urakawa, KEK LCWS2012 Contents : 0. Short review of 300Hz conventional positron source.
Gamma Beam Systems a simple introduction. Purpose of the machine Deliver a high performance photon beam: Variable energy Highly polarized High intensity.
SAPPHiRE workshop, CERN 19 th Feb 2013 A SAPPHiRE Laser? Laura Corner Lasers for Accelerators group (L4A) John Adams Institute for Accelerator Science,
Laser Notcher Pulse Energy Requirements & Demonstration Experiment David Johnson, Todd Johnson, Vic Scarpine.
Photon Collider at CLIC Valery Telnov Budker INP, Novosibirsk LCWS 2001, Granada, Spain, September 25-30,2011.
Experimental Effort for Alternative Schemes Experimental Effort for Alternative Schemes Hirotaka Shimizu Hiroshima University ILC2007 at DESY Hamburg.
16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC e + sources status L. Rinolfi with contributions from F. Antoniou, H. Braun, A. Latina, Y. Papaphilippou,
The UCLA PEGASUS Plane-Wave Transformer Photoinjector G. Travish, G. Andonian, P. Frigola, S. Reiche, J. Rosenzweig, and S. Telfer UCLA Department of Physics.
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
Midterm Accelerator Test Facility development goals and new experimental possibilities Vitaly Yakimenko April 5, 2007.
Low Emittance RF Gun Developments for PAL-XFEL
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
WG3a Sources Summary Jim Clarke on behalf of John Sheppard, Masao Kuriki, Philippe Piot and all the contributors to WG3a.
Study of High Intensity Multi-Bunch  -ray Generation by Compton Scattering ATF TB 28/May/2006 presented by Tsunehiko OMORI (KEK) on behalf.
Transverse Profiling of an Intense FEL X-Ray Beam Using a Probe Electron Beam Patrick Krejcik SLAC National Accelerator Laboratory.
After Posipol In my opinion we are still too much dispersed. We have to re compact our community if we want to succeed in presenting a Compton version.
Laser cooling of electron beams Valery Telnov Budker INP, Novosibirsk Nanobeam-2008 BINP, May 26-29, 2008.
Ideas for e+ source and e+ polarization 29-May-2013 ECFA LC Workshop at DESY T. Omori.
1 Polarized  -source based on intra-cavity Compton backscattering (Compton LINAC scheme) Igor Pogorelsky, Vitaly Yakimenko, Mikhail Polyanskiy 2009.
A.Variola Motivations…from D.Hitlin Talk The polarized positron source.
20 April 2009 AAP Review Global Design Effort 1 The Positron Source Jim Clarke STFC Daresbury Laboratory.
Laser Based Polarized e + e + Source for ILC 8th ACFA Daegu 11-14/Jul/2005 Tsunehiko OMORI (KEK)
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Compact X-ray & Emittance Measurement by Laser Compton Scattering Zhi Zhao Jan. 31, 2014.
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
Status of the Compton Experiment at the ATF TILC09 18-April-2009 T.Takahashi Hiroshima University for collaborators.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
Valery Telnov Budker INP, Novosibirsk IWLC2010, CERN October 21, 2010 A FEL pumped solid state laser system for the photon collider at CLIC.
T.Takahashi Hiroshima /11/5 Tohru Takahashi Hiroshima University 高橋 徹 広島大学.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
Conventional source developments (300Hz Linac scheme and the cost, Part-II) Junji Urakawa, KEK PosiPol-2012 at DESY Zeuthen Contents : 0. Short review.
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
Laser electron beam x 30 Multi-Compton chamber system γ-ray cm Conceptual design in 2005 Snowmass X 5 at present Big progress During R&D.
GDE FRANCE Why High brillance gun is good for the ERL scheme? And SC GUN? Alessandro Variola For the L.A.L. Orsay group.
Linac e+ source for ILC, CLIC Vitaly Yakimenko, Igor Pogorelsky Brookhaven National Laboratory Compton Sources for X/  Rays: Physics and Applications.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
November 17, 2008 A. Brachmann Slide 1 ILC polarized Electron Source R&D Update LCWS 2008 A. Brachmann, J. Sheppard, F. Zhou - SLAC National Accelerator.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
Laser electron beam x 30 Multi-Compton chamber system γ-ray cm Conceptual design in 2005 Snowmass X 5 at present Good progress During R&D From Conventional.
Compton based Polarized Positrons Source for ILC V. Yakimenko 1, D. Cline 2, Ya. Fukui 2, V. Litvinenko 1, I. Pogorelsky 1, S. Roychowdhury 3 1 BNL, 2.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW.
Ultrashort (few cycles) Pulse Generation in (IR-THz) FELs
CLIC Main Beam Sources and their transfer lines
Tunable Electron Bunch Train Generation at Tsinghua University
Conveners: L.Serafini,F. Villa
Injection facility for Novosibirsk Super Charm Tau Factory
Pol. positron generation scheme for ILC
Compton effect and ThomX What possible future?
Capture and Transmission of polarized positrons from a Compton Scheme
ERL accelerator review. Parameters for a Compton source
with contributions from
LCLS Commissioning Parameters
Explanation of the Basic Principles and Goals
Polarized Positrons in JLEIC
Presentation transcript:

Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk

ILC Source requirements ParameterSymbolValueUnit Positrons per bunchnpnp 2x10 10 e+e+ Bunches per pulseNbNb 2820 Bunch Spacing* bb ~300ns Pulse rep. ratef rep 5Hz Positron Polarization**PpPp ~60% * The length of the bunch train in ILC is 2820x300ns = 0.85 ms or 250 km. Bunch spacing has to be reduced in the dumping ring. ** Polarization level defines conversion/capture efficiency of polarized  rays into polarized positrons. 60% level corresponds to ~1.5% efficiency.

Polarized Positron Production: Compton Ring Scheme: CO 2 Version (Omori, et al.)

Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In this proposal polarized  -ray beam is generated in the Compton back scattering inside optical cavity of CO 2 laser beam and 4-6 GeV e-beam produced by linac. The required intensities of polarized positrons are obtained due to 5 times increase of the e-beam charge (compared to non polarized case) and 10IP CO 2 laser system. Laser system relies on the commercially available lasers but need R&D for the new mode of operation 5ps Hz CO 2 laser is operated at Brookhaven ATF.

Compton Experiment at Brookhaven ATF (record number of X-rays with 10  m laser) More then 10 8 of x-rays per pulse were generated in the experiment PR ST N X /N e- ~0.1. (0.35 as of April limited by laser/electron beams diagnostics) Interaction point with high power laser focus of ~30  m was tested. Nonlinear limit (more then one laser photon scattered from electron) was verified. PRL Real CCD images Nonlinear and linear x-rays

Choice of parameters ~40  m laser focus is set by practical considerations of electron and laser beams focusing and requires ~5 ps long laser pulses Nonlinear effects in Compton back scattering limit laser energy at ~1-2J Pulse train structure of Hz is set by main linac. We change it to 100 bunches at 150Hz. This mode is more natuaral for warm RF and lasers. ~300ns bunch spacing in the main linac will be changed in the dumping ring in any design ns bunch spacing is selected for optimal current in the drive linac and to match the inversion life time of the laser 12ns *100 bunches = 1.2  s. Train of ~10 nC electron bunches is required to produce polarized gammas per bunch. (~1  -ray per 1 electron per laser IP) Conversion efficiency of polarized gammas into captured polarized positrons is assumed at ~1.5% and is subject of optimization. N , N e  and N   are the numbers of  -rays, electrons and laser photons, S is the area of the interacting beams and  C is the Compton cross sections

Compton based PPS with CO2 laser No positron accumulation is needed: –Efficient head-on collision due to higher divergence of CO2 beam. –10  m CO2 beam has 10x number of photons per laser energy. –750 W average power industrial laser. Easier target and efficient positron capture: –Beam format changed in the injector from 3000 Hz to 100 Hz (1  Hz is more natural for warm RF and laser). –40MV/m gradient in post target linac is possible. –Efficient collimation due to strong energy / divergence correlation of the gamma beam in the Compton scattering. Doable laser: –Commercially available components (designed for needed –Low repetition rate model (10Hz) is operational at ATF as an amplifier of 5ps beam (laser cavity mode with 5ps pulse is needed). Can be add-on option for non-polarized source linac. 2 Step R&D is needed: –Test of the laser cavity at low repetition rate with ATF laser; optimize target and capture for this scheme. –Assemble and test seed system and one laser cavity at full power.

Laser system for PPS amplifier 24ns ring cavities (2 pulses x 12ns spacing) 1J / pulse sustained for 1.2 ms IP#1IP#10 CO2 oscillator 2 pulses, 5ps, 10mJ (YAG laser) 2 x 200ps Kerr generator 2 x 5ps 1  J Regenerative amplifier amplifier 2x5ps 10mJ 2x300mJ BS TFP PC 2x 30mJ 5ps 2 x 1J 5ps 2x30mJ 2 x 1J 1x150ns Ge optical switch amplifier Train of 2 pulses spaced by 12 ns and 5 ps long sliced with a YAG beam from a 150 ns CO2 oscillator pulse This train is seeded inside a regenerative amplifier cavity that has a round-trip time (12ns x 2=24 ns) Amplified 2 pulses are dumped from the regenerative cavity with a Pockels cell and, after amplification, split with partial reflectors in 10 beams. After amplification to 1 J/pulse, each 2-pulse train is injected into a ring cavity individual for each IP An intracavity amplifier serves just to compensate optical losses during 1.2  s time interval needed for interactions with 100 electron bunches.

Lasers from SDI WH20WH100WH350 WH500 Wavelength 9 – 11µm, Line Tunable Continuous 20 Hz100 Hz350 Hz500 Hz Repetition Rate Pulse Energy1.5 J Mode Type Multimode Optional:TEMoo, custom beam shapes, SLM Beam Size13 x 13 mm 2 Average Power30 W150 W525 W750 W Power Stability < 7 %

Laser system for PPS Optical slicing and amplification of 5 ps CO 2 pulses has been demonstrated and utilized in routine ATF operation for user experiments. CO 2 oscillator and initial amplifiers are commercially available lasers from SDI and operate at rep. rate up to 500Hz. Final intracavity amplifiers shall operate at average power 750W (100 bunches x 1J x ~5% intracavity loss x 150Hz). High pressure CO2 laser is available at 750W average power at 500Hz. Operation of laser in nonstandard regime at high rep. rate, injection and uniform enregy during 1.2  s are R&D subjects.

Conclusion We proposed Polarized Positron Source based on Compton back scattering inside optical cavity of CO 2 laser beam and 4-6 GeV e-beam produced by linac. The proposal utilizes commercially available units for laser and accelerator systems. The proposal requires high power picosecond CO2 laser mode of operation developed at ATF.