1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle.

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

Capture, focusing and energy selection of laser driven ion beams using conventional beam elements Morteza Aslaninejad Imperial College 13 December 2012.
S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Beam Dynamics Justifications of modification of.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
STATUS OF THE TOP-IMPLART PROTON LINAC P. Nenzi 1, F. Ambrosini 3, A. Ampollini 1, G. Bazzano 1, F. Marracino 1, L. Picardi 1, C. Ronsivalle 1, C. Snels.
Laser accelerated ions and their potential for therapy accelerators I. Hofmann, GSI Accelerator Department HIAT09, Venezia, June 8-12, Introduction.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
THE TOP-IMPLART PROJECT Concetta Ronsivalle,Mariano Carpanese, Giovanni Messina, Luigi Picardi, Sandro Sandri (ENEA C.R. Frascati, Frascati (Roma)) Carmela.
Carbon Injector for FFAG
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
J. Rodnizki SARAF, Soreq NRC HB2008, August, 2008 Nashville TN Lattice Beam dynamics study and loss estimation for SARAF/ EURISOL driver 40/60 MeV 4mA.
THE TOP LINAC PROJECT ISS-ENEA Project to demonstrate operability of a compact proton linac in a medium size hospital HIGH POWER RF TESTS OF THE FIRST.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
Low Emittance RF Gun Developments for PAL-XFEL
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
ACCELERATING A CYCLOTRON 18 MEV PROTON BEAM BY A SCDTL LINAC Luigi Picardi, Concetta Ronsivalle (ENEA C.R. Frascati, Frascati (Roma)), Paola Panichelli,
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
SIMPLE CHARACTERIZATION METHOD OF SMALL HIGH GRADIENT PERMANENT MAGNET QUADRUPOLES Concetta Ronsivalle,Luigi Picardi, Monia Vadrucci (ENEA C.R. Frascati,
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
1 Generation of laser-driven secondary sources and applications Patrizio Antici Istituto Nazionale di Fisica Nucleare Università di Roma “Sapienza”
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
ADAM meeting Geneve, SCDTL study for ERHA C. Ronsivalle, L. Picardi.
ICFA-HB 2004 Commissioning Experience for the SNS Linac A. Aleksandrov, S. Assadi, I. Campisi, P. Chu, S. Cousineau, V. Danilov, G. Dodson, J. Galambos,
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Jorg Kewisch, Dmitri Kayran Electron Beam Transport and System specifications.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Concept Preliminary Estimations A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u) Output energy (MeV/u)2.5(3.5) Beam.
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
Helical Accelerating Structure with Controllable Beam Emittance S.V. Kuzikov 1, A.A. Vikharev 1, J.L. Hirshfield 2,3 1 Institute of Applied Physics RAS,
X-band Based FEL proposal
ELI PHOTOINJECTOR PARAMETERS: PRELIMINARY ANALYSIS AND SIMULATIONS C. RONSIVALLE.
Beam dynamics and linac optics studies for medical proton accelerators
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 1 Laser acceleration.
S.M. Polozov & Ko., NRNU MEPhI
Present and possible future schemes for hadron therapy linacs Alberto Degiovanni for the ADAM team HG2017 Workshop , Valencia.
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
The LIGHT project Status of the LIGHT experiments HICforFAIR PhysicsDay: Accelerator July 5th 2012 GSI Helmholtzcenter for Heavy Ion Research Abel Blazevic.
Positron capture section studies for CLIC Hybrid source - baseline
Progress in the Multi-Ion Injector Linac Design
M. Migliorati, C. Vaccarezza INFN - LNF
NC Accelerator Structures
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
Wakefield Accelerator
C. Ronsivalle, L. Picardi, C. Cianfarani, G. Messina, G. L
Capture and Transmission of polarized positrons from a Compton Scheme
SuperB e+/e- main linac and diagnostics studies
CEPC Injector Damping Ring
Pulsed Ion Linac for EIC
Advanced Research Electron Accelerator Laboratory
Electron sources for FCC-ee
MEBT1&2 design study for C-ADS
Physics Design on Injector I
Start to end design of a dedicated laser driven proton hybrid beamline for Cultural heritage applications Antonia Morabito 15 October 2018.
DTL M. Comunian M. Eshraqi.
CEPC Injector Linac beam dynamics
Multi-Ion Injector Linac Design – Progress Summary
Presentation transcript:

1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle P. Antici, L. Lancia, M. Migliorati, A. Mostacci, L. Palumbo, L. Picardi, C. Ronsivalle

2 Motivation and context There are several conventional beamline facilities that are looking at laser-driven beamline projects CALA APOLLON

3 Starting point: we consider „today“ measured parameters and try to make beamlines out of it Issue: Large energy spread Large beam divergence (Low energy)

4 General scheme for beam capture and post-acceleration Drift space (to exit target chamber) Conventional capturing section (4 or 5 Quadrupoles) Laser-generated proton source Accelerating section (48 DTL cells) Device to focus and energy- select protons Looking for the best compromise in terms of 1)Highest (stable) energy 2)Highest dose 3)Lowest energy spread 4)Smallest beam divergence 5)Fully characterized source 6)Feasible

5 Starting point: we consider „today“ measured parameters and try to make beamlines out of it Surface contaminant (H 2 O) H + ion Bulk Target (Al) e-e- Laser: few J / ~1 ps (>10 TW) I 2 >10 18 W cm -2  m 2 Up to 67 MeV Emittance 100 times better than conventional accelerators Duration a few ps TNSA 100 TW laser Issue: Large energy spread Large beam divergence (Low energy)

6 t=350 fs I~3×10 19 W.cm -2 =1 µm t=350 fs I~3×10 18 W.cm -2 =1 µm CPA 1 diverging proton beam proton source foil CPA 2 focused proton beam T.Toncian et al; Science 16 Feb. (2006) Patent: PILZ (2005) RCF and/or Magnetic Spectrometer Focusing & energy selection: ultra-fast laser-triggered ion micro-lens

7 Best results in terms of energy spread, number of protons and beam divergence simulation with the micro-lens (0.2 MeV resolution) simulation with the micro-lens (0.1 MeV resolution) w/o the micro-lens with the micro-lens  E/E ~ 3%

8 We use parameters measured in the micro-lens output for injection in the conventional section 6.9 to 7.1 MeV after the cylinder  protons (320 pC) transverse source sizes (FWHM): x=y=80 µm with σx=σy=20 µm residual divergence: x’=y’=40 mrad with σx’= σy’=9 mrad un-normalized emittance mm.mrad Simulations: Parmela / TStep

9 Drift Tube Lin(ear)ac(celerator) designed with EM Field solver for particle accelerators gap We used typical state of the art capturing sections and accelerating structures DTLs (SNS) 48 cells, 0.17 MeV/cell, f=350 MHz We use the drift-kick method (electric fields are designed with SUPERFISH, average = 3 MV/m)

10 Propagation axis (cm) Bunch length (mm) Propagation axis (cm) Transverse beam size (mm) source Drift space Focusing section Accelerating section (DTL Tank) Parmela results without space-charge

11 Space charge effects Average current for 350 MHz (all particules = 112 mA), SNS is 0.11 mA P. Antici et al., J. of Applied Physics, 104, (2008)

12 SCDTL improves capturing and post-acceleration Short DTL tanks + side coupling cavities Side coupling cavities on axis with very small Permanent Magnet Quadrupole (PMQ) (3 cm long, 2 cm o.Ø, 6 mm i. Ø) for transverse focusing. Designed for medical applications S-band (3 GHz) very versatile to develop L. Picardi et al., "Struttura SCDTL", Patent n. RM95-A SCDTL:

13 SCDTL specification Frequency Number of modules Number of tanks/module Number of cells/tank Inter-tank distance Bore radius Total length Average electric field, E 0 Acc. electric field, E 0 T Synchronous phase,  s Maximum PMQ gradient RF power for the structure 3 GHz  in module #1, 4.5  -3.5  in module #2 2 mm in module #1, 2.5 mm in the module # m 11.3 MV/m between 7 and 7.75 MV/m -30° 220 T/m <1.5 MW

14 Solenoid Length 70 mm, diameter 44 mm Laser- generated proton source (with µlens) SCDTL 2590 mm 17 mm117 mm Lattice structure using Side Coupled DTLs Total length Average electric field Acc. electric field, E 0 T Max PMQ gradient 2.59 m 11.3 MV/m MV/m 220 T/m C. Ronsivalle et al., Proceedings of IPAC’10, Kyoto, Japan State of the art PHELIX Solenoid (8.6 T) (PHELIX)(optimized) K. Harres et al., Phys. Plasmas 17, (2010)

15 Output of SCDTL Beam EnvelopeBeam Energy Shorter DTL

16 Beam dynamics with space charge yield high output current Total output current (red) and useful output current (i.e. 0.6 MeV around maximum)(blue) versus the input current TSTEP, macroparticles Transmission (red points), output norm. emittance (blue points) versus the input current Useful output current=13 mA, ~36 % of total

17 Spectrum becomes even more monoenergetic using the SCDTL Normalized energy spectrum for 100 mA input current and two different lengths of the leading drift. P. Antici et al., PoP 18, (2011) We have a laser-driven proton beamline !

18 Sensitivity study (typical for a beamline) CaseInput  x (µm) Input  x’ (mrad) Input rms unnormalize d emittance (mm-mrad) Total output current (mA) Useful output current (mA) Output rms normalized emittance (Exn*Eyn)0.5 (mm-mrad) Study at the proton source

19 P. Antici et al., J. Plasma Phys (in print) Sensitivity study (typical for a beamline) Study with the lattice structure Combined (95 % acceptance) 50 runs, values uniformly distributed ±|Error amplitude|

20 Thank you for your attention

21

22 Conclusions It is possible to couple laser-generated protons to a high frequency LINAC in a compact acceleration hybrid scheme. Conventional accelerator community could provide necessary know-how and techniques to reach laser- driven beamlines A 10 Hz laser repetition rate corresponds to an average proton current of pA that could be used to perform radiobiology experiments. A current between 13 and 26 mA can be captured and accelerated up to 15.5 MeV in ~3 m.

23 Beam shaping with conventional accelerators becomes more fashionable M. Nishiuchi et al Phys Rev STAB (2010), 5% spread, 10% efficiency K. Harres et al J. Phys Conf. Series (2010) F. Nürnberg et al., PAC 2009 A. Almomani et al., Proceeding IPAC (2010) Focusing with Solenoids Post-acc with modified DTL Transport with 1 Hz V. Bagnoud et al., APB (2009) 8 T solenoid

24 Improvements using beam shaping with conventional accelerator devices Injection studied using RF-cavity S. Nakamura et al. Jap Jour. Appl. Phys. 46 L717 (2007) M. Schollmeier et al., PRL 101, (2008) Focalisation using Quadrupoles Logan, Caparasso, Roth, Cowan, Ruhl et al. (LBNL-LLNL-GSI-GA) (2000) Combined accelerator 5 % spread

25 The micro-lens offers (tunable) energy selection Cylinder

26 CPA 2 Debye sheath of hot electrons (A) initial stage Zone of quasi- neutral expansion (B) expansion stage Focusing fields are Debye sheath fields driven by the hot electrons

27 Efficient reduction of the beam divergence (tunable) without micro-lens with micro-lens numerical simulations Proton beam FWHM (mm) Propagation distance (cm) 7.5 MeV with > 5 A collimated

28 Phase space in the structure SCDTL InputSCDTL Output Laser source Δ Energy