ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.

Slides:



Advertisements
Similar presentations
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg Short Bunches at FLASH.
Advertisements

Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
Radiation Physics | ELBE | SRF Photo Injector for Electron- Laser Interaction LA 3 NET conference: Laser applications at accelerators, Mallorca,
J. Rudolph, Helmholtz-Zentrum Berlin EuCARD 2nd ANNUAL MEETING Slice emittance measurements at the ELBE superconducting RF photoinjector.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Diagnostics and commissioning on ERLP Yuri Saveliev ASTeC CONFORM Project: EMMA Design Review Workshop February 2007, Daresbury Laboratory.
First operation of the TTF2 injector with beam Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Hamburg, 16 Sept 2003.
ALICE Beam Simulations Deepa Angal-Kalinin On behalf of ALICE simulation team F. Jackson, J. Jones, J. McKenzie, B. Muratori, Y. Saveliev, P. Williams,
Reduced Gun Simulations 1. Comparison 60MV/m Gun vs 50MV/m Gun, Flat Top Laser Pulse 2. Comparison for the worst case: Gun50+Gauss Laser Pulse 3. Summary.
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
P. Emma FAC Meeting 7 Apr Low-Charge LCLS Operating Point Including FEL Simulations P. Emma 1, W. Fawley 2, Z. Huang 1, C.
C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Beam Dynamics Justifications of modification of.
Cecile Limborg-Deprey Injector Commissioning September Injector Commissioning Plans C.Limborg-Deprey Gun exit measurements.
F Specifications for the dark current kicker for the NML test facility at Fermilab S. Nagaitsev, M. Church, P. Piot, C.Y. Tan, J. Steimel Fermilab May.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
Modelling of the ALICE Injector Julian McKenzie ASTeC STFC Daresbury Laboratory IOP Particle Accelerators and Beams Group Status and Challenges of Simulation.
ALICE Commissioning Part II : Injector Yuri Saveliev Seminar on 14-15/07/2008 Gun to Booster Booster to FCUP-01 The rest of the Injector.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
I.V. Bazarov, Multivariate Optimization of High Brightness DC Gun Photoinjector, UCLA Workshop, 8-10 November CHESS / LEPP ERL DC Gun Injector.
Low Emittance RF Gun Developments for PAL-XFEL
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Accelerator Science and Technology Centre Extended ALICE Injector J.W. McKenzie, B.D. Muratori, Y.M. Saveliev STFC Daresbury Laboratory,
March-May 2012 AP Projects 1.Beam substructure. 2.Bunch length/energy spread in pre- compressed bunch using RF techniques with 325 kV gun voltage 3.TOA.
XFEL Beam Dynamics Meeting Bolko Beutner, DESY Velocity Bunching Studies at FLASH Bolko Beutner, DESY XFEL Beam Dynamics Meeting
Christopher Gerth DL/RAL Joint Workshop 28-29/4/04 Modelling of the ERLP injector system Christopher Gerth ASTeC, Daresbury Laboratory.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
Velocity bunching from S-band photoinjectors Julian McKenzie 1 st July 2011 Ultra Bright Electron Sources Workshop Cockcroft Institute STFC Daresbury Laboratory,
D. Lipka, V. Vogel, DESY Hamburg, Germany, Oct Optimization cathode design with gun5 D. Lipka, V. Vogel, DESY Hamburg, Germany.
Electron Source Design Dr Tim Noakes ASTeC, STFC Daresbury Laboratory.
FLS2010 Workshop, Stanford, March 1-5, 2010 Florian Loehl (Cornell University) Commissioning of the High Current ERL Injector at Cornell Florian Loehl.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Status of the Simulations on Photo Injector Optimization for Low Charges Yauhen Kot BD Meeting,
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
Preliminary Tracking Results through LCLS-II P. Emma et al., Oct. 23, 2013 Thanks to Mark Woodley and Yuri Nosochkov for MAD design work Use Christos Papadopoulos.
Injector Requirements Linac Coherent Light Source Stanford Linear Accelerator Center Technical Review, March 1st, 2004 Cécile.
Construction, Commissioning, and Operation of Injector Test Facility (ITF) for the PAL-XFEL November 12, 2013 S. J. Park, J. H. Hong, C. K. Min, I. Y.
LCLS-II Injector layout design and study Feng Zhou 8/19/2015.
X-band Based FEL proposal
ELI PHOTOINJECTOR PARAMETERS: PRELIMINARY ANALYSIS AND SIMULATIONS C. RONSIVALLE.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Sara Thorin, MAX IV Laboratory
BC2 Commissioning Parameters
MIT Compact X-ray Source
Experimental Optimization and Characterization of Electron Beams for Generating IR/THz SASE FEL Radiation with PITZ. P. Boonpornprasert, G. Asova1, Y.
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Needle Cathodes for RF Guns
LCLS Commissioning Parameters
LCLS Commissioning Parameters
ERL accelerator review. Parameters for a Compton source
LCLS Longitudinal Feedback and Stability Requirements
Injector: What is needed to improve the beam quality?
LCLS Commissioning Parameters
Injector Topics for Discussion
Selected simulations for XFEL photo injector
VELA TDC: Bunch Length and Longitudinal Phasespace Measurements Update
Modified Beam Parameter Range
Injector Experimental Results John Schmerge, SSRL/SLAC April 24, 2002
Simulations for the LCLS Photo-Injector C
Thermal Emittance Measurement at PITZ
LCLS Commissioning Parameters
Electron Optics & Bunch Compression
New VUV-FEL Simulation results
Minimized emittance for high charge with multi cell superconducting guns and solenoidal focusing D. Lipka, BESSY.
Fast kicker beam dynamics simulations
S2E Meeting on Yauhen Kot.
Presentation transcript:

ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012

Baseline: Gun voltage350 kV Bunch charge60 pC Laser spot diameter4 mm flat-top Laser pulse length7 ps Gaussian / 28 ps flat-top ? Sol 1 peak field330 G Sol 2 peak field187 G Buncher power1.6 kW BC1 gradient8 MV/m BC1 phase-20 BC2 gradient5 MV/m BC2 phase+30 Post-booster beam energy6.5 MeV Simulations using ASTRA (07/04/2008 win32) No intrinsic emittance – could expect up to 1.2 mm mrad from photocathode

7 ps Gaussian vs 28 ps flat-top

Buncher power [W] Buncher power scans Bunch length required at entrance to linac to achieve energy spread for FEL ~7ps We still don’t understand booster to linac longitudinal dynamics... Red = 7 ps Gaussian Blue = 28 ps flat-top Yuri reckons 1.6 mm FWHM

BC1 scans Red = 1 kW buncher power Green = 1.6 kW buncher power For 7 ps Gaussian laser pulse

For 1kW buncher power, choose +15 BC1 phase Set SOL-02 to minimise transverse beam size Set BC2 phase to minimise chirp (-13)

But phase space isn’t good: Is RMS bunch length even a good quantity to optimise on? Need to look at phase space plots

Phase space plots (longitudinal) Red = 7 ps Gaussian Blue = 28 ps flat-top -20/ /+10 (as per original model) Using “nominal” setup detailed on slide 1 Looks similar to Bruno’s: Lots of charge at the “crossover point” NB// head to the right. z [m] vs pz (eV/c)

BC1 phase for minimum curvature: BC1 = -6 BC1 = 0 Buncher = 1 kW Buncher = 1.6 kW For 7 ps Gaussian laser pulse

Sol2 scans Red = 1 kW buncher power Green = 1.6 kW buncher power For 7 ps Gaussian laser pulse

BC2 phase? BC1 at -6 SOL-02 at 220G Red = 1 kW buncher power Green = 1.6 kW buncher power For 7 ps Gaussian laser pulse

To do list: Emittance vs SOL-02 for 7/28ps with identical bunch length from buncher At minimum emittance from above, BC2 phase scan to look at minimum energy spread Investigate lowering energy gain from BC1 Anything else?