Capacitor C 1 is connected across a battery of 5 V. An identical capacitor C 2 is connected across a battery of 10 V. Which one has the most charge? C.

Slides:



Advertisements
Similar presentations
ConcepTest 1 Series Resistors I
Advertisements

Capacitance and Dielectrics
ConcepTest 17.1a Electric Potential Energy I
Capacitors.
RC Circuits.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Physics 2112 Unit 8: Capacitors
You reposition the two plates of a capacitor so that the capacitance doubles. There is vacuum between the plates. If the charges +Q and –Q on the two plates.
© 2012 Pearson Education, Inc. The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase.
ConcepTest 16.1a Electric Charge I
AP Physics B Summer Course 年 AP 物理 B 暑假班 M Sittig Ch 20: Electrostatics.
Unit 2 Day 3: Electric Energy Storage Electric potential energy stored between capacitor plates Work done to add charge to the capacitor plates Energy.
ConcepTest 21.1 Connect the Battery
UNIT 9 Electrostatics and Currents 1. Thursday March 22 nd 2 Electrostatics and Currents.
Copyright © 2010 Pearson Education, Inc. ConcepTest Clicker Questions Chapter 20 Physics, 4 th Edition James S. Walker.
Copyright © 2009 Pearson Education, Inc. Dielectrics.
Example: a parallel plate capacitor has an area of 10 cm 2 and plate separation 5 mm. 300 V is applied between its plates. If neoprene is inserted between.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Capacitance Chapter 18 – Part II C Two parallel flat plates that store CHARGE is called a capacitor. The plates have dimensions >>d, the plate separation.
Lecture 8 Capacitance and capacitors
I Chapter 25 Electric Currents and Resistance HW7: Due Monday, March 30; Chap.24: Pb.32,Pb.35,Pb.59 Chap.25: Pb.19,Pb.25,Pb.31.
1 Capacitance and Dielectrics Chapter 27 Physics chapter 27.
When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm2.
(Capacitance and capacitors)
Capacitance Physics Department, New York City College of Technology.
24 volts + - When fully charged which of these three capacitors holds the largest quantity of charge, Q? 2)B 3)C 4)all are the same Which of these three.
A +Q-Q d 12 V +  device to store charge –(also stores energy) connect capacitor to battery (V) –plates become oppositely charged +Q/-Q Q = C V charge.
ConcepTest 16.1aElectric Potential Energy I ConcepTest 16.1a Electric Potential Energy Ielectron proton electron proton + - A proton and an electron are.
Capacitors Consider two large metal plates which are parallel to each other and separated by a distance small compared with their width. Area A The field.
RC Circuits PH 203 Professor Lee Carkner Lecture 14.
ConcepTest 16.1aElectric Potential Energy I ConcepTest 16.1a Electric Potential Energy Ielectron proton electron proton + - A proton and an electron are.
Physics for Scientists and Engineers, 6e
ConcepTest 25.1 Capacitors
Copyright © 2009 Pearson Education, Inc. May Term in Guatemala GDS 3559/STS 3500: Engineering Public Health: An Interdisciplinary Exploration of Community.
ConcepTest 17.1a Electric Potential Energy I
Electrical Energy and Capacitance. Electrical Potential Energy Potential energy associated with the electrical force between two charges Form of mechanical.
ConcepTest 18.1 Connect the Battery
ConcepTest 16.1aElectric Charge I ConcepTest 16.1a Electric Charge I a)one is positive, the other is negative b)both are positive c)both are negative d)both.
ConcepTest 20.1aElectric Potential Energy I ConcepTest 20.1a Electric Potential Energy I 1) proton 2) electron 3) both feel the same force 4) neither –
Which of these configurations gives V = 0 at all points on the y-axis? 4) all of the above 5) none of the above 10. Equipotential Surfaces III 1) x +2.
1. ConcepTest 19.1aSeries Resistors I 9 V Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential.
GENERAL PHYSICS LECTURE Chapter 26 CAPACITANCE AND DIELECTRICS Nguyễn Thị Ngọc Nữ PhD: Nguyễn Thị Ngọc Nữ.
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b to –2Q,
Chapter 16 Electrical Energy and Capacitance Conceptual Quiz Questions.
1. ConcepTest 17.1aElectric Potential Energy I 1. ConcepTest 17.1a Electric Potential Energy I 1) proton 2) electron 3) both feel the same force 4) neither.
Capacitance Physics Montwood High School R. Casao.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Physics 212 Lecture 8, Slide 1 Physics 212 Lecture 8 Today's Concept: Capacitors How does a capacitor behave in a circuit? More circuit examples.
Copyright © 2009 Pearson Education, Inc. Dielectrics.
Heated filamentPositively charged can E = 800,000 N/C d = 2.5 cm, 1 e = 1.60  C v final ? Electron Gun.
Physics 2102 Jonathan Dowling Physics 2102 Lecture 8 Capacitors II.
12/4/2016 Advanced Physics Capacitance  Chapter 25 – Problems 1, 3, 8, (17), 19, (33), 39, 40 & 49.
Physics 212 Lecture 8, Slide 1 Physics 212 Lecture 8 Today's Concept: Capacitors Capacitors in a circuits, Dielectrics, Energy in capacitors.
Consider a charged capacitor whose plates are separated by air (dielectric constant 1.00 ). The capacitor is electrically isolated from its surroundings.
What charge exists on a 30 μF capacitor (fully charged) with a 120 V potential difference between its plates and what is the energy stored? Ans: 3.6.
Capacitance Chapter 25. Capacitance A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its capacitance C is defined.
Review Question Describe what happens to the lightbulb after the switch is closed. Assume that the capacitor has large capacitance and is initially uncharged,
Capacitor Circuits. Thunk some more … C 1 C 2 V C3C3 C1=12.0  f C2= 5.3  f C3= 4.5  d (12+5.3)pf.

6. Capacitance and capacitors 6.1 Capacitors +Q -Q +Q -Q +Q 6.2 Capacitance [C]= 1 F = 1 C / V Definition:Units: Symbol: C is independent from: Q and ΔV.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
ENGINEERING PHYSICS SEMESTER /2012. ENGINEERING PHYSICS Sub Topics ● Charge units ● Electric field ● Electric force & Coulomb’s Law ● Capacitance.
Example: a parallel plate capacitor has an area of 10 cm2 and plate separation 5 mm. 300 V is applied between its plates. If neoprene is inserted between.
A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the.
Physics: Principles with Applications, 6th edition
ConcepTest 17.1a Electric Potential Energy I
Potential Difference and Capacitance
What charge exists on a 30 μF capacitor (fully charged) with a 120 V potential difference between its plates and what is the energy stored? Ans: 3.6.
Presentation transcript:

Capacitor C 1 is connected across a battery of 5 V. An identical capacitor C 2 is connected across a battery of 10 V. Which one has the most charge? C 1 1) C 1 C 2 2) C 2 3) both have the same charge 4) it depends on other factors ConcepTest 20.8Capacitors ConcepTest 20.8 Capacitors

Q = C V greater voltagemost charge C 2 Since Q = C V and the two capacitors are identical, the one that is connected to the greater voltage has the most charge, which is C 2 in this case. Capacitor C 1 is connected across a battery of 5 V. An identical capacitor C 2 is connected across a battery of 10 V. Which one has the most charge? C 1 1) C 1 C 2 2) C 2 3) both have the same charge 4) it depends on other factors ConcepTest 20.8Capacitors ConcepTest 20.8 Capacitors

increase the area of the plates 1) increase the area of the plates decrease separation between the plates 2) decrease separation between the plates 3) decrease the area of the plates 4) either (1) or (2) 5) either (2) or (3) What must be done to a capacitor in order to increase the amount of charge it can hold (for a constant voltage)? +Q –Q ConcepTest 20.9aVarying Capacitance I ConcepTest 20.9a Varying Capacitance I

Q = C V increase its capacitance increasing Adecreasing d Since Q = C V, in order to increase the charge that a capacitor can hold at constant voltage, one has to increase its capacitance. Since the capacitance is given by, that can be done by either increasing A or decreasing d. increase the area of the plates 1) increase the area of the plates decrease separation between the plates 2) decrease separation between the plates 3) decrease the area of the plates 4) either (1) or (2) 5) either (2) or (3) What must be done to a capacitor in order to increase the amount of charge it can hold (for a constant voltage)? +Q –Q ConcepTest 20.9aVarying Capacitance I ConcepTest 20.9a Varying Capacitance I

+Q+Q –Q–Q A parallel-plate capacitor initially has a voltage of 400 V and stays connected to the battery. If the plate spacing is now doubled, what happens? the voltage decreases 1) the voltage decreases the voltage increases 2) the voltage increases the charge decreases 3) the charge decreases the charge increases 4) the charge increases both voltage and charge change 5) both voltage and charge change ConcepTest 20.9bVarying Capacitance II ConcepTest 20.9b Varying Capacitance II

Since the battery stays connected, the voltage must remain constant ! Q = C Vcharge must decrease Since the battery stays connected, the voltage must remain constant ! Since, when the spacing d is doubled the capacitance C is halved. And since Q = C V, that means the charge must decrease. +Q+Q –Q–Q A parallel-plate capacitor initially has a voltage of 400 V and stays connected to the battery. If the plate spacing is now doubled, what happens? the voltage decreases 1) the voltage decreases the voltage increases 2) the voltage increases the charge decreases 3) the charge decreases the charge increases 4) the charge increases both voltage and charge change 5) both voltage and charge change ConcepTest 20.9bVarying Capacitance II ConcepTest 20.9b Varying Capacitance II Follow-up: How do you increase the charge?

A parallel-plate capacitor initially has a potential difference of 400 V and is then disconnected from the charging battery. If the plate spacing is now doubled (without changing Q), what is the new value of the voltage? 100 V 1) 100 V 200 V 2) 200 V 3) 400 V 4) 800 V 5) 1600 V +Q+Q –Q–Q ConcepTest 20.9cVarying Capacitance III ConcepTest 20.9c Varying Capacitance III

Once the battery is disconnected, Q has to remain constant Q = C V voltage must double Once the battery is disconnected, Q has to remain constant, since no charge can flow either to or from the battery. Since, when the spacing d is doubled the capacitance C is halved. And since Q = C V, that means the voltage must double. A parallel-plate capacitor initially has a potential difference of 400 V and is then disconnected from the charging battery. If the plate spacing is now doubled (without changing Q), what is the new value of the voltage? 100 V 1) 100 V 200 V 2) 200 V 3) 400 V 4) 800 V 5) 1600 V +Q+Q –Q–Q ConcepTest 20.9cVarying Capacitance III ConcepTest 20.9c Varying Capacitance III