Texture We would like to thank Amnon Drory for this deck הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.

Slides:



Advertisements
Similar presentations
A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui
Advertisements

POSE–CUT Simultaneous Segmentation and 3D Pose Estimation of Humans using Dynamic Graph Cuts Mathieu Bray Pushmeet Kohli Philip H.S. Torr Department of.
O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.
The Layout Consistent Random Field for detecting and segmenting occluded objects CVPR, June 2006 John Winn Jamie Shotton.
Agenda Introduction Bag-of-words models Visual words with spatial location Part-based models Discriminative methods Segmentation and recognition Recognition-based.
Part 4: Combined segmentation and recognition by Rob Fergus (MIT)
Learning to Combine Bottom-Up and Top-Down Segmentation Anat Levin and Yair Weiss School of CS&Eng, The Hebrew University of Jerusalem, Israel.
Scene Labeling Using Beam Search Under Mutex Constraints ID: O-2B-6 Anirban Roy and Sinisa Todorovic Oregon State University 1.
Carolina Galleguillos, Brian McFee, Serge Belongie, Gert Lanckriet Computer Science and Engineering Department Electrical and Computer Engineering Department.
Semantic Texton Forests for Image Categorization and Segmentation We would like to thank Amnon Drory for this deck הבהרה : החומר המחייב הוא החומר הנלמד.
Real-Time Human Pose Recognition in Parts from Single Depth Images Presented by: Mohammad A. Gowayyed.
Efficient Inference for Fully-Connected CRFs with Stationarity
Bag-of-features models. Origin 1: Texture recognition Texture is characterized by the repetition of basic elements or textons For stochastic textures,
In Silico Brain Tumor Research Center Emory University, Atlanta, GA Classification of Brain Tumor Regions S. Cholleti, *L. Cooper, J. Kong, C. Chisolm,
Analyzing Semantic Segmentation Using Hybrid Human-Machine CRFs Roozbeh Mottaghi 1, Sanja Fidler 2, Jian Yao 2, Raquel Urtasun 2, Devi Parikh 3 1 UCLA.
Models for Scene Understanding – Global Energy models and a Style-Parameterized boosting algorithm (StyP-Boost) Jonathan Warrell, 1 Simon Prince, 2 Philip.
Kinect Case Study CSE P 576 Larry Zitnick
Recognition using Regions CVPR Outline Introduction Overview of the Approach Experimental Results Conclusion.
Robust Higher Order Potentials For Enforcing Label Consistency
Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues David R. Martin Charless C. Fowlkes Jitendra Malik.
TextonBoost : Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation J. Shotton*, J. Winn†, C. Rother†, and A.
Berkeley Vision GroupNIPS Vancouver Learning to Detect Natural Image Boundaries Using Local Brightness,
Bag-of-features models
The Layout Consistent Random Field for Recognizing and Segmenting Partially Occluded Objects By John Winn & Jamie Shotton CVPR 2006 presented by Tomasz.
Texture Readings: Ch 7: all of it plus Carson paper
Redaction: redaction: PANAKOS ANDREAS. An Interactive Tool for Color Segmentation. An Interactive Tool for Color Segmentation. What is color segmentation?
Perceptual Organization: Segmentation and Optical Flow.
Cue Integration in Figure/Ground Labeling Xiaofeng Ren, Charless Fowlkes and Jitendra Malik, U.C. Berkeley We present a model of edge and region grouping.
What, Where & How Many? Combining Object Detectors and CRFs
Heather Dunlop : Advanced Perception January 25, 2006
Review: Intro to recognition Recognition tasks Machine learning approach: training, testing, generalization Example classifiers Nearest neighbor Linear.
Bag-of-features models. Origin 1: Texture recognition Texture is characterized by the repetition of basic elements or textons For stochastic textures,
Analysis: TextonBoost and Semantic Texton Forests
Lecture 06 06/12/2011 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/24/10.
Object Stereo- Joint Stereo Matching and Object Segmentation Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on Michael Bleyer Vienna.
Bag-of-features models. Origin 1: Texture recognition Texture is characterized by the repetition of basic elements or textons For stochastic textures,
Texture. Texture is an innate property of all surfaces (clouds, trees, bricks, hair etc…). It refers to visual patterns of homogeneity and does not result.
Texture We would like to thank Amnon Drory for this deck הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
TEMPLATE DESIGN © Zhiyao Duan 1,2, Lie Lu 1, and Changshui Zhang 2 1. Microsoft Research Asia (MSRA), Beijing, China.2.
Supervised Learning of Edges and Object Boundaries Piotr Dollár Zhuowen Tu Serge Belongie.
Lecture 03 15/11/2011 Shai Avidan הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Advanced Multimedia Image Content Analysis Tamara Berg.
Epitomic Location Recognition A generative approach for location recognition K. Ni, A. Kannan, A. Criminisi and J. Winn In proc. CVPR Anchorage,
Levels of Image Data Representation 4.2. Traditional Image Data Structures 4.3. Hierarchical Data Structures Chapter 4 – Data structures for.
Associative Hierarchical CRFs for Object Class Image Segmentation
Lecture 09 03/01/2012 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Advanced Multimedia Image Content Analysis Tamara Berg.
Category Independent Region Proposals Ian Endres and Derek Hoiem University of Illinois at Urbana-Champaign.
Lecture 08 27/12/2011 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Jigsaws: joint appearance and shape clustering John Winn with Anitha Kannan and Carsten Rother Microsoft Research, Cambridge.
A New Method for Crater Detection Heather Dunlop November 2, 2006.
Markov Random Fields & Conditional Random Fields
CS654: Digital Image Analysis
Object Recognition by Integrating Multiple Image Segmentations Caroline Pantofaru, Cordelia Schmid, Martial Hebert ECCV 2008 E.
A Statistical Approach to Texture Classification Nicholas Chan Heather Dunlop Project Dec. 14, 2005.
TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation J. Shotton ; University of Cambridge J. Jinn,
Object Recognition by Discriminative Combinations of Line Segments and Ellipses Alex Chia ^˚ Susanto Rahardja ^ Deepu Rajan ˚ Maylor Leung ˚ ^ Institute.
M ACHINE L EARNING : F OUNDATIONS C OURSE TAU – 2012A P ROF. Y ISHAY M ANSOUR o TextonBoost : Joint Appearance, Shape and Context Modeling for Multi-Class.
Lecture 05 29/11/2011 Shai Avidan Roy Josef Jevnisek הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Cell Segmentation in Microscopy Imagery Using a Bag of Local Bayesian Classifiers Zhaozheng Yin RI/CMU, Fall 2009.
Image segmentation.
Presenter: Jae Sung Park
Holistic Scene Understanding Virginia Tech ECE /02/26 Stanislaw Antol.
Nonparametric Semantic Segmentation
Real-Time Human Pose Recognition in Parts from Single Depth Image
Learning to Combine Bottom-Up and Top-Down Segmentation
Grouping/Segmentation
“Traditional” image segmentation
Presentation transcript:

Texture We would like to thank Amnon Drory for this deck הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.

Syllabus Textons TextonsBoost

Textons Run filter bank on images Build Texton dictionary using K-means Map texture image to histogram Histogram Similarity using Chi-square

TextonBoost Build Texton dictionary Texture Layout (pixel, rectangle, Texton) Count number of textons in rectangle Use Integral Image Generate multiple Texture layouts (Features) For each class do 1-vs-all classifier: – For each pixel in class Train GentleBoost Classifier Map strong classifier to probability Take Maximum value

CRF/MRF How to ensure Spatial Consistency? Bayes LikelihoodPosterior ML MAP Prior

Semantic Texton Forest Decision Trees Forest and Averaging Split decision to minimize Entropy Two level STF to add spatial regularization Works well when there is ample data, does not generalize well

(1) Textons B. Julesz, Leung, Malik M. Varma, A. Zisserman (II) TextonBoost J. Shotton, J. Winn, C. Rother, A. Criminisi (III) Semantic Texton Forests J. Shotton, M. Johnson, R. Cipolla (IV) Pose Recognition from Depth Images J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake

Textures

Filter Bank

K-means

Texton Histogram

Classification

Results

TextonBoost : Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation J. Shotton *, J. Winn †, C. Rother †, and A. Criminisi † * University of Cambridge † Microsoft Research Ltd, Cambridge, UK

TextonBoost Simultaneous recognition and segmentation Simultaneous recognition and segmentation Explain every pixel Explain every pixel

TextonBoost Input: Input: 1. Training: Images with pixel level ground truth classification MSRC 21 Database

TextonBoost Input: Input: 1. Training: Images with pixel level ground truth classification. 2. Testing: Images Output: Output: A classification of each pixel in the test images to an object class.

Conditional Random Field Unary TermBinary Term Unary TermBinary Term

Textons Shape filters use texton maps ( [Varma & Zisserman IJCV 05], [Leung & Malik IJCV 01]) Convolve with 17D filter bank (Gaussians, Derivatives of Gaussians, DoGs, LoGs) – Can use Gabor instead Use k-means to create 400 clusters Compact and efficient characterisation of local texture Texton map Colors  Texton Indices Input image  Clustering Filter Bank

CRF: Unary Term Probability of class c_i given feature vector x

Texture-Layout Filters Pair: Feature responses v(i, r, t) Large bounding boxes enable long range interactions rectangle rtexton t (, ) v(i 1, r, t) = a v(i 3, r, t) = a/2 up to 200 pixels (, ) (, )

Texture Layout (Toy Example)

CRF: Binary Term

Potts model Potts model encourages neighbouring pixels to have same label encourages neighbouring pixels to have same label Contrast sensitivity Contrast sensitivity encourages segmentation to follow image edges encourages segmentation to follow image edges

Accurate Segmentation? Boosted classifier alone – effectively recognises objects – but not sufficient for pixel- perfect segmentation Conditional Random Field (CRF) – jointly classifies all pixels whilst respecting image edges unary term only CRF

The TextonBoost CRF Texture-LayoutColorlocation edge Unary Term Binary Term

Location Term Capture prior on absolute image location Capture prior on absolute image location treeskyroad Texture-LayoutColorlocation edge

Color Term Texture-LayoutColorlocation edge

Texture-Layout Term

Texton Boost - Summary Performs per-pixel classification using: 1. Statistics learned from Training Set: - Absolute location statistics - Configuration of textured areas around pixel of interest. 2. Cues from the Test Image: - Edges - Object Colors 3. Priors.

Results on 21-Class Database building

Effect of Model Components Shape-texture potentials only:69.6% + edge potentials:70.3% + Color potentials:72.0% + location potentials:72.2% shape-texture + edge + Color & location pixel-wise segmentation accuracies