Demos for QBSH J.-S. Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.

Slides:



Advertisements
Similar presentations
Dynamic Time Warping (DTW)
Advertisements

Standard Template Library Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Shallow Copy Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Retrieval Methods for QBSH (Query By Singing/Humming) J.-S. Roger Jang ( 張智星 ) Multimedia Information Retrieval.
1 Oct 30, 2006 LogicSQL-based Enterprise Archive and Search System How to organize the information and make it accessible and useful ? Li-Yan Yuan.
Thursday, November 13, 2008 ASA 156: Statistical Approaches for Analysis of Music and Speech Audio Signals AudioDB: Scalable approximate nearest-neighbor.
Basic Computer Networks Configurations (cont.) School of Business Eastern Illinois University © Abdou Illia, Spring 2006 Week 2, Thursday 1/19/2006)
The Chinese University of Hong Kong Department of Computer Science and Engineering Lyu0202 Advanced Audio Information Retrieval System.
FLANN Fast Library for Approximate Nearest Neighbors
GCT731 Fall 2014 Topics in Music Technology - Music Information Retrieval Introduction to MIR Course Overview 1.
Databases & Data Warehouses Chapter 3 Database Processing.
Business Overview Who Is ROCKETinfo?. The Business Rocketinfo is a Web 2.0 Company focusing on providing Web-based information. The goal is to provide.
Xpantrac connection with IDEAL Sloane Neidig, Samantha Johnson, David Cabrera, Erika Hoffman CS /6/2014.
Mobile Application Abstract Future Work The potential applications and integration of this project are vast – many large department and grocery stores.
NM7613: Music Signal Analysis and Retrieval 音樂訊號分析與檢索 Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
2015/9/111 Introduction to ISMIR/MIREX J.-S. Roger Jang (張智星) Multimedia Information Retrieval (MIR) Lab CSIE Dept, National Taiwan Univ.
2015/9/131 Stress Detection J.-S. Roger Jang ( 張智星 ) MIR LabMIR Lab, CSIE Dept., National Taiwan Univ.
2015/9/151 Two Paradigms for Music IR: Query by Singing/Humming and Audio Fingerprinting J.-S. Roger Jang ( 張智星 ) Multimedia Information Retrieval Lab.
Multimedia Databases (MMDB)
Contactforum: Digitale bibliotheken voor muziek. 3/6/2005 Real music libraries in the virtual future: for an integrated view of music and music information.
Simple Database.
National Taiwan University
2015/10/221 Progressive Filtering and Its Application for Query-by-Singing/Humming J.-S. Roger Jang ( 張智星 ) Multimedia Information Retrieval Lab CS Dept.,
ENOMA - European Network of Online Musical Archives ENOMA Workshop – The Grieg Academy, UiB 26 May 2006 Leif Arne Rønningen and Lars Erik Løvhaug NTNU.
加速以 GPU 為運算核心的二階段哼唱選歌 系統 A CCELERATING A T WO -S TAGE Q UERY BY S INGING /H UMMING S YSTEM U SING GPU S Student:Andy Chuang ( 莊詠翔 )
2015/10/251 Two Paradigms for Music IR: Query by Singing/Humming and Audio Fingerprinting J.-S. Roger Jang ( 張智星 ) Multimedia Information Retrieval Lab.
Content-based Music Retrieval from Acoustic Input (CBMR)
Music Information Retrieval Information Universe Seongmin Lim Dept. of Industrial Engineering Seoul National University.
2016/6/41 Recent Improvement Over QBSH and AFP J.-S. Roger Jang (張智星) Multimedia Information Retrieval (MIR) Lab CSIE Dept, National Taiwan Univ.
Sorting Algorithms Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
1 Biometric Databases. 2 Overview Problems associated with Biometric databases Some practical solutions Some existing DBMS.
RuSSIR 2013 QBSH and AFP as Two Successful Paradigms of Music Information Retrieval Jyh-Shing Roger Jang ( 張智星 ) MIR Lab, CSIE Dept.
Enabling Access to Sound Archives through Integration, Enrichment and Retrieval Annual Review Meeting - Introduction.
Singer similarity / identification Francois Thibault MUMT 614B McGill University.
Binary Search Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Music Information Retrieval: Overview and Challenges
QBSH Corpus The QBSH corpus provided by Roger Jang [1] consists of recordings of children’s songs from students taking the course “Audio Signal Processing.
Audio Fingerprinting as a New Task for MIREX-2014 Chung-Che Wang Jyh-Shing Roger Jang.
Copyright © 2002 Pearson Education, Inc. Slide 3-1 Internet II A consortium of more than 180 universities, government agencies, and private businesses.
STL: Maps Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Query by Singing and Humming System
CPSC 203 Introduction to Computers T59 & T64 By Jie (Jeff) Gao.
Behrooz ChitsazLorrie Apple Johnson Microsoft ResearchU.S. Department of Energy.
Some Research Activities in MIR Lab J.-S. Roger Jang ( 張智星 ) Multimedia Information Retrieval Lab CS.
DTW for Speech Recognition J.-S. Roger Jang ( 張智星 ) MIR Lab ( 多媒體資訊檢索實驗室 ) CS, Tsing Hua Univ. ( 清華大學.
1 Hidden Markov Model: Overview and Applications in MIR MUMT 611, March 2005 Paul Kolesnik MUMT 611, March 2005 Paul Kolesnik.
Distance/Similarity Functions for Pattern Recognition J.-S. Roger Jang ( 張智星 ) CS Dept., Tsing Hua Univ., Taiwan
Discussions on Audio Melody Extraction (AME) J.-S. Roger Jang ( 張智星 ) MIR Lab, CSIE Dept. National Taiwan University.
Simulation of Stock Trading J.-S. Roger Jang ( 張智星 ) MIR Lab, CSIE Dept. National Taiwan University.
Linear Classifiers (LC) J.-S. Roger Jang ( 張智星 ) MIR Lab, CSIE Dept. National Taiwan University.
Introduction to Music Information Retrieval (MIR)
Introduction to ISMIR/MIREX
Search in Google's N-grams
MIR Lab: R&D Foci and Demos ( MIR實驗室:研發重點及展示)
Query by Singing/Humming via Dynamic Programming
Introduction to Pattern Recognition
Singing Voice Separation via Active Noise Cancellation 使用主動式雜訊消除於歌聲分離
MATCH A Music Alignment Tool Chest
自我介紹 學歷: 研究方向: 經歷: 1984:學士,台大電機系 1992:博士,加州大學柏克萊分校、電機電腦系
Closing Remarks on MSAR-2017
Intro. to Audio Signals Jyh-Shing Roger Jang (張智星)
Introduction to Music Information Retrieval (MIR)
Introduction to Music Information Retrieval (MIR)
Machine Learning in FinTech
Network Controllable MP3 Player
Query by Singing/Humming via Dynamic Programming
Scientific Computing: Closing 科學計算:結語
Game Trees and Minimax Algorithm
Duration & Pitch Modification via WSOLA
Pre and Post-Processing for Pitch Tracking
Presentation transcript:

Demos for QBSH J.-S. Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University

Intro. to QBSH zQBSH: Query by Singing/Humming zChallenges yRobust pitch tracking yKey transposition yCollection of song databases yEfficient comparison xKaraoke box: ~10000 songs xInternet: 500M songs, 12M albums (

Efficient Retrieval in QBSH zMethods for efficient retrieval yMulti-stage progressive filtering yIndexing for different comparison methods yMusic phrase identification yRepeating pattern identification yDistributed & parallel computing zOur focus yParallel computing via GPU

MIRACLE zMIRACLE yMusic Information Retrieval Acoustically via Clustered and paralleL Engines zDatabase (~20K songs) yMIDI files ySolo vocals (<100) yMelody extracted from polyphonic music (<100) zComparison methods yLinear scaling yDynamic time warping zTop-10 Accuracy y~75% zPlatform ySingle CPU+GPU

MIRACLE (II) zReferences (full list)full list yJ.-S. Roger Jang and Ming-Yang Gao, "A Query-by-Singing System based on Dynamic Programming", International Workshop on Intelligent Systems Resolutions (the 8th Bellman Continuum), PP , Hsinchu, Taiwan, Dec yJyh-Shing Roger Jang, Jiang-Chun Chen, Ming-Yang Kao, "MIRACLE: A Music Information Retrieval System with Clustered Computing Engines", International Symposium on Music Information Retrieval (ISMIR) 2001 y… yChung-Che Wang and Jyh-Shing Roger Jang, “Acceleration of Query by Singing/Humming Systems on GPU: Compare from Anywhere”, International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012

MIRACLE Before Oct zClient-server distributed computing zCloud computing via clustered PCs Master server Clients Clustered servers PC PDA/Smartphone Cellular Slave Master server Slave servers Request: pitch vector Response: search result Database size: ~12,000

Current MIRACLE zSingle server with GPU yNVIDIA 560 Ti, 384 cores (speedup factor = 10) Master server Clients Single server PC PDA/Smartphone Cellular Master server Request: pitch vector Response: search result Database size: ~13,000

MIRACLE in the Future zMulti-modal retrieval ySinging, humming, speech, audio, tapping… Master server Clients Clustered servers PC PDA/Smartphone Cellular Slave Master server Slave servers Request: feature vector Response: search result

QBSH for Various Platforms zPC yWeb version zEmbedded systems yKaraoke machines zSmartphones yiPhone/Android zToysToys y16-bit micro- controller

QBSH Prototype in MATLAB z To create a QBSH prototype in MATLAB yGet familiar with audio processing in MATLAB xSee audio signal processingaudio signal processing yTry the programming contests on xPitch trackingPitch tracking xQBSHQBSH Run exampleProgram/goDemo.m to test drive the QBSH prototype in MATLAB!

QBSH Demos zQBSH demos by our lab yQBSH on the web: MIRACLEMIRACLE yQBSH on toysQBSH on toys zExisting commercial QBSH systems ywww.midomi.comwww.midomi.com ywww.soundhound.comwww.soundhound.com

Returned Results zTypical results of MIRACLE

13 Online Karaoke Synchronized lyrics Calory consumption Real-time score Recording Live broadcast Real-time pitch display Automatic key adjustment

Future Work zMulti-modal music retrieval yQuery by user’s inputs: Singing, humming, whistling, speech, tapping, beatboxing yQuery by exact examples: Audio clips zSpeedup schemes yRepeating pattern id., DTW indexing zDatabase preparation yPolyphonic audio music as database  The ultimate challenge!