Solving Double Digest Problem by Genetic Algorithm

Slides:



Advertisements
Similar presentations
Genetic Algorithms Vida Movahedi November Contents What are Genetic Algorithms? From Biology … Evolution … To Genetic Algorithms Demo.
Advertisements

EO – The Evolving Objects Library Artificial Intelligence II James Maxlow April 17 th, 2003.
Exact and heuristics algorithms
Non-Linear Problems General approach. Non-linear Optimization Many objective functions, tend to be non-linear. Design problems for which the objective.
1 Bacterial Genetics Chapter 8-9. Figure 13.2a.
Introduction to Bioinformatics Algorithms DNA Mapping and Brute Force Algorithms.
Text Chapters 1, 2. Sorting ä Sorting Problem: ä Input: A sequence of n numbers ä Output: A permutation (reordering) of the input sequence such that:
Iterative Improvement Algorithms
Fuzzy Simulated Evolution for Power and Performance of VLSI Placement Sadiq M. SaitHabib Youssef Junaid A. KhanAimane El-Maleh Department of Computer Engineering.
Research Trends in Artificial Intelligence Muhammad Younas Hassan Javid Danish Shah
Genetic Algorithm for Variable Selection
Research Trends in AI Maze Solving using GA Muhammad Younas Hassan Javaid Danish Hussain
Local Search and Stochastic Algorithms
Selecting Informative Genes with Parallel Genetic Algorithms Deodatta Bhoite Prashant Jain.
Fuzzy Evolutionary Algorithm for VLSI Placement Sadiq M. SaitHabib YoussefJunaid A. Khan Department of Computer Engineering King Fahd University of Petroleum.
Genetic Algorithm What is a genetic algorithm? “Genetic Algorithms are defined as global optimization procedures that use an analogy of genetic evolution.
The Simplified Partial Digest Problem: Hardness and a Probabilistic Analysis Zo ë Abrams Ho-Lin Chen
Molecular Biology of Genes Chapters DNA Technology (not in your book)
Introduction to Bioinformatics Algorithms Exhaustive Search and Branch-and-Bound Algorithms for Partial Digest Mapping.
& Gel Plasmid Electrophoresis Mapping.
Brandon Andrews.  What are genetic algorithms?  3 steps  Applications to Bioinformatics.
distance from centromere
Lecture 8: 24/5/1435 Genetic Algorithms Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Ch.12 Machine Learning Genetic Algorithm Dr. Bernard Chen Ph.D. University of Central Arkansas Spring 2011.
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Physical Mapping of DNA BIO/CS 471 – Algorithms for Bioinformatics.
More on Heuristics Genetic Algorithms (GA) Terminology Chromosome –candidate solution - {x 1, x 2,...., x n } Gene –variable - x j Allele –numerical.
The Generational Control Model This is the control model that is traditionally used by GP systems. There are a distinct number of generations performed.
FINAL EXAM SCHEDULER (FES) Department of Computer Engineering Faculty of Engineering & Architecture Yeditepe University By Ersan ERSOY (Engineering Project)
Evolutionary Art with Multiple Expression Programming By Quentin Freeman.
A New Evolutionary Approach for the Optimal Communication Spanning Tree Problem Sang-Moon Soak Speaker: 洪嘉涓、陳麗徽、李振宇、黃怡靜.
 Based on observed functioning of human brain.  (Artificial Neural Networks (ANN)  Our view of neural networks is very simplistic.  We view a neural.
 Genetic Algorithms  A class of evolutionary algorithms  Efficiently solves optimization tasks  Potential Applications in many fields  Challenges.
Improving the Genetic Algorithm Performance in Aerial Spray Deposition Management University of Georgia L. Wu, W.D. Potter, K. Rasheed USDA Forest Service.
Introduction to Genetic Algorithm Principle: survival-of-the-fitness Characteristics of GA Robust Error-tolerant Flexible When you have no idea about solving.
Solving Function Optimization Problems with Genetic Algorithms September 26, 2001 Cho, Dong-Yeon , Tel:
A Genetic Approach to Standard Cell Placement Using Meta- Genetic Parameter Optimization Khusro Shahookar Pinaka Mazumder.
An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Physical Mapping – Restriction Mapping.
1 Chapter 3 GAs: Why Do They Work?. 2 Schema Theorem SGA’s features: binary encoding proportional selection one-point crossover strong mutation Schema.
Genetic Algorithms. Underlying Concept  Charles Darwin outlined the principle of natural selection.  Natural Selection is the process by which evolution.
Genetic Programming Using Simulated Natural Selection to Automatically Write Programs.
The Implementation of Genetic Algorithms to Locate Highest Elevation By Harry Beddo.
Applications of Genetic Algorithms By Harry Beddo 3 rd Quarter.
Genetic Algorithm(GA)
Evolutionary Design of the Closed Loop Control on the Basis of NN-ANARX Model Using Genetic Algoritm.
Using GA’s to Solve Problems
Genetic Algorithms.
A Study of Genetic Algorithms for Parameter Optimization
Example: Applying EC to the TSP Problem
آشنایی با الگوریتم های زمانبندی
Genetic Algorithms Permutation crossovers
Restriction Enzymes and Plasmid Mapping
Genetic Algorithm and Their Applications to Scheduling
Genetic Algorithms CPSC 212 Spring 2004.
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Example: Applying EC to the TSP Problem
Example: Applying EC to the TSP Problem
نعيمه خاكزاد سودابه سليماني خدايار خليلي استاد مربوطه: مهندس گرجي زاده
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Mutation Testing Tutorial Answers
Lecture 9 Genome Mapping By Ms. Shumaila Azam
Solving the Minimum Labeling Spanning Tree Problem
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Yupei Xiong Bruce Golden Edward Wasil INFORMS Annual Meeting
Objective: to find and verify inverses of functions.
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Steady state Selection
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Genetic Engineering CH. 13.
GA.
Presentation transcript:

Solving Double Digest Problem by Genetic Algorithm Marek Kukačka & Zdeněk Pátek

Double Digest Problem (DDP) Input: ΔA – fragment lengths from the complete digest with enzyme A ΔB – fragment lengths from the complete digest with enzyme B ΔAB – fragment lengths from the complete digest with both A and B Output: A – location of the cuts in the restriction map for the enzyme A B – location of the cuts in the restriction map for the enzyme B Double Digest Problem is NP - complete

Genetic Algorithm (GA)

Mutation Swap mutation Insert mutation

Crossover One-point crossover

Selection Inverse Tournament Selection while (populationSize > N) do select individuals X1, X2 from population randomly if fitness(X1) > fitness(X2) remove X2 from population else remove X1 from population

Results – Random DDPs (1)

Results – Random DDPs (2)

Results – Random DDPs (3)

Results – Random DDPs (4)

Results – Random DDPs (5)

Custom DDPs (1) 1. Custom DDP (moderate) 2. Custom DDP (easy) B: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 AB: 1, 2, 3, 4, 5, 4, 2, 6, 1, 6, 2, 4, 5, 4, 3, 2, 1 2. Custom DDP (easy) B: 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 AB: 1, 10, 1, 1, 9, 1, 2, 8, 1, 3, 7, 1, 4, 6

Custom DDPs (2) 3. Custom DDP (hard) 4. Custom DDP (weird) B: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 AB: 1, 2, 3, 4, 2, 3, 6, 2, 5, 5, 3, 6, 3, 5, 5, 2, 6, 3, 2, 4, 3, 2, 1 4. Custom DDP (weird) A: (1, 3) 100 B: (2, 2) 100 AB: (1, 1, 2) 100

Results – 1. Custom DDP NO_EXP NO_FAILS POP_SIZE MUT_PROB MUT_RATIO CRS_PROB AVG_GEN BEST_GEN AVG_MRS BEST_MRS 20 167 100 0.5 0.1 466 74 93479 14634 44 500 176 100111 34963 50 0.9 366 39 73356 7833 47 310 68 39691 8661 12 322 63 41253 7988 252 40 32233 5156 45 1 292 53 29224 5300 14 351 108 35193 10799 17 342 59 34233 5900 300 494 160 296817 95966 38 475 96 285085 57797 41 258 155408 24636 11 346 60 133189 23174 4 278 65 107046 24861 5 271 104279 20279 24 77502 13499 3 175 54 52618 16199 8 274 46 82377 13800 66 536 241 536578 241216 353 106 353710 105502 67 271012 67416 365 56 233966 35731 153 98060 24225 254 48 162812 30849 10 371 58 185819 28997 6 152 75997 32497 13 76572 23499

Results – 2. Custom DDP NO_EXP NO_FAILS POP_SIZE MUT_PROB MUT_RATIO CRS_PROB AVG_GEN BEST_GEN AVG_MRS BEST_MRS 20 27 100 0.5 0.1 449 51 89878 10241 39 428 63 85575 12454 28 0.9 394 18 78904 3533 9 365 49 46757 6336 14 317 40 40647 5082 11 271 30 34842 3788 6 1 321 56 32164 5600 4 398 33 39883 3300 200 36 20044 3600 10 300 378 60 227068 35700 21 356 214179 29489 12 239 43 143611 25985 3 155 34 59652 13112 37 77161 14169 2 134 51464 10347 121 36568 6000 133 48 40153 14399 8 232 22 69717 6600 500 272 272415 55772 67 300331 67080 228 50 228515 49822 163 104541 13191 91 58355 25586 5 81 52147 21092 115 57923 5499 113 19 56698 9499 140 70272 9000

Results – 3. Custom DDP NO_EXP NO_FAILS POP_SIZE MUT_PROB MUT_RATIO CRS_PROB AVG_GEN BEST_GEN AVG_MRS BEST_MRS 20 200 100 0.5 0.1   UNSOLVABLE 0.9 126 558 112 71456 14164 178 365 46973 14407 1 300 161 724 439 278213 169016 54 491 188838 38022 199 466 179 178930 68642 123 481 185 144537 55499 152 372 89 111836 26699 500 82 541 261 541227 261369 110 533 189 533523 189694 86 338 109 216641 69882 26 345 221109 69757 16 343 90 219688 57656 139 564 228 282066 113995 50 182769 54498 76 371 130 185519 64999