Time Value of Money Chapter 5 © 2003 South-Western/Thomson Learning.

Slides:



Advertisements
Similar presentations
Principles of Finance Part 3. Requests for permission to make copies of any part of the work should be mailed to: Thomson/South-Western 5191 Natorp Blvd.
Advertisements

Chapter 3 The Time Value of Money © 2005 Thomson/South-Western.
Chapter 7 The Time Value of Money © 2005 Thomson/South-Western.
Chapter 3 The Time Value of Money © 2005 Thomson/South-Western.
6-1 Copyright (C) 2000 by Harcourt, Inc. All rights reserved. Chapter 6 The Time Value of Money Future Value Present Value Rates of Return Amortization.
Introduction to Finance
9 - 1 Copyright © 1999 by the Foundation of the American College of Healthcare Executives Future and present values Lump sums Annuities Uneven cash flow.
Chapter 6 - Time Value of Money
Chapter 4 The Time Value of Money 1. Learning Outcomes Chapter 4  Identify various types of cash flow patterns  Compute the future value and the present.
The Time Value of Money: Annuities and Other Topics
1 Chapter 05 Time Value of Money 2: Analyzing Annuity Cash Flows McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Discounted Cash Flow Valuation Chapter 5.
CHAPTER THREE THE INTEREST RATE FACTOR IN FINANCING.
Chapter 5 Time Value of Money.
Principles of Managerial Finance 9th Edition
2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization.
Learning Objectives Explain the mechanics of compounding, and bringing the value of money back to the present. Understand annuities. Determine the future.
Chapter 3 The Time Value of Money. 2 Time Value of Money  The most important concept in finance  Used in nearly every financial decision  Business.
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. 6 6 Calculators Discounted Cash Flow Valuation.
Multiple Cash Flows –Future Value Example 6.1
Chapter McGraw-Hill/Irwin Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. 6 Discounted Cash Flow Valuation.
Multiple Cash Flows –Future Value Example
CHAPTER 6 Discounted Cash Flow Valuation. Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present.
Copyright © 2011 Pearson Prentice Hall. All rights reserved. The Time Value of Money: Annuities and Other Topics Chapter 6.
Discounted Cash Flow Valuation.  Be able to compute the future value of multiple cash flows  Be able to compute the present value of multiple cash flows.
TIME VALUE OF MONEY CHAPTER 5.
0 Chapter 6 Discounted Cash Flow Valuation 1 Chapter Outline Future and Present Values of Multiple Cash Flows Valuing Level Cash Flows: Annuities and.
Chapter 6 Calculators Calculators Discounted Cash Flow Valuation McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 4 The Time Value of Money
Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. Understand the concept.
The Time Value of Money A core concept in financial management
2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization.
THE TIME VALUE OF MONEY TVOM is considered the most Important concept in finance because we use it in nearly every financial decision.
Chapter 4 Time Value of Money. Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-2 Learning Goals 1.Discuss the role of time value in finance,
Finance 2009 Spring Chapter 4 Discounted Cash Flow Valuation.
THE TIME VALUE OF MONEY TVOM is considered the most Important concept in finance because we use it in nearly every financial decision.
Copyright © 2003 Pearson Education, Inc. Slide 4-0 Chapter 4 Time Value of Money.
© 2009 Cengage Learning/South-Western The Time Value Of Money Chapter 3.
CHAPTER 5 Time Value of Money (“TVOM”)
McGraw-Hill/Irwin ©2001 The McGraw-Hill Companies All Rights Reserved 5.0 Chapter 5 Discounte d Cash Flow Valuation.
Chapter 5 The Time Value of Money. Copyright ©2014 Pearson Education, Inc. All rights reserved.5-1 Learning Objectives 1.Explain the mechanics of compounding,
6-1 CHAPTER 5 Time Value of Money. 6-2 Time lines Show the timing of cash flows. Tick marks occur at the end of periods, so Time 0 is today; Time 1 is.
Present Value Present value is the current value of a future sum.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
Principles of Finance 5e, 9 The Time Value of Money © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to.
1 Chapter 05 Time Value of Money 2: Analyzing Annuity Cash Flows McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Time Value of Money © 2007 Thomson South-Western Professor XXX Course name/number.
© 2009 Cengage Learning/South-Western The Time Value Of Money Chapter 3.
Chapter 4 The Time Value of Money. Essentials of Chapter 4 Why is it important to understand and apply time value to money concepts? What is the difference.
2-1 CHAPTER 2 Time Value of Money Future Value Present Value Annuities Rates of Return Amortization.
6-1 Chapter 6 The Time Value of Money Future Value Present Value Rates of Return Amortization.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 4 Time Value of Money.
© 2013 Pearson Education, Inc. All rights reserved.3-1 Chapter 3 Understanding and Appreciating the Time Value of Money.
1 Chapter 5 – The Time Value of MoneyCopyright 2008 John Wiley & Sons MT 480 Unit 2 CHAPTER 5 The Time Value of Money.
Finance Chapter 6 Time value of money. Time lines & Future Value Time Lines, pages Time: Cash flows: -100 Outflow ? Inflow 5%
© 2003 The McGraw-Hill Companies, Inc. All rights reserved. Discounted Cash Flow Valuation Chapter Six.
Lecture Outline Basic time value of money (TVM) relationship
Chapter 5 The Time Value of Money. Time Value The process of expressing –the present in the future (compounding) –the future in the present (discounting)
© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization.
6-1 Time Value of Money Future value Present value Annuities Rates of return Amortization.
Present Value Professor XXXXX Course Name / Number.
Chapter 5 Time Value of Money. Basic Definitions Present Value – earlier money on a time line Future Value – later money on a time line Interest rate.
Chapter 6 The Time Value of Money— Annuities and Other Topics.
Understanding and Appreciating the Time Value of Money
Time Value of Money Chapter 5  Future Value  Present Value  Annuities  Rates of Return  Amortization.
CHAPTER 6 Time Value of Money
Presentation transcript:

Time Value of Money Chapter 5 © 2003 South-Western/Thomson Learning

2 Time is Money $100 in your hand today is worth more than $100 in one year Money earns interest The higher the interest, the faster your money grows

3 Time is Money Present Value The amount that must be deposited today to have a future sum at a certain interest rate The discounted value of a sum is its present value

4 Outline of Approach Deal with four different types of problems Amount Present value Future value Annuity Present value Future value

5 Outline of Approach Mathematics For each type of problem an equation will be presented Time lines Graphic portrayal of a time value problem 012 Helps with complicated problems

6 Amount Problems—Future Value The future value (FV) of an amount How much a sum of money placed at interest (k) will grow into in some period of time If the time period is one year FV 1 = PV + kPV or FV 1 = PV(1+k) If the time period is two years FV 2 = FV 1 + kFV 1 or FV 2 = PV(1+k) 2 If the time period is generalized to n years FV n = PV(1+k) n

7 Amount Problems—Future Value The (1 + k) n depends on Size of k and n Can develop a table depicting different values of n and k and the proper value of (1 + k) n Can then use a more convenient formula FV n = PV [FVF k,n ] These values can be looked up in an interest factor table.

8 Other Issues Problem-Solving Techniques Three of four variables are given We solve for the fourth The Opportunity Cost Rate The opportunity cost of a resource is the benefit that would have been available from its next best use

9 Financial Calculators Work directly with equations How to use a typical financial calculator in time value Five time value keys Use either four or five keys Some calculators distinguish between inflows and outflows If a PV is entered as positive the computed FV is negative

10 The Expression for the Present Value of an Amount The future and present values factors are reciprocals Either equation can be used to solve any amount problems Solving for k or n involves searching a table.

11 Annuity Problems Annuity A finite series of equal payments separated by equal time intervals Ordinary annuities Payments occur at the end of the time periods Annuity due Payments occur at the beginning of the time periods

12 The Future Value of an Annuity— Developing a Formula Future value of an annuity The sum, at its end, of all payments and all interest if each payment is deposited when received

13 The Future Value of an Annuity— Developing a Formula Thus, for a 3-year annuity, the formula is FVFA k,n

14 The Future Value of an Annuity—Solving Problems There are four variables in the future value of an annuity equation The future value of the annuity itself The payment The interest rate The number of periods Helps to draw a time line

15 The Sinking Fund Problem Companies borrow money by issuing bonds for lengthy time periods No repayment of principal is made during the bonds’ lives Principal is repaid at maturity in a lump sum A sinking fund provides cash to pay off a bond’s principal at maturity Problem is to determine the periodic deposit to have the needed amount at the bond’s maturity—a future value of an annuity problem

16 Compound Interest and Non- Annual Compounding Compounding Earning interest on interest Compounding periods Interest is usually compounded annually, semiannually, quarterly or monthly Interest rates are quoted by stating the nominal rate followed by the compounding period

17 The Effective Annual Rate Effective annual rate (EAR) The annually compounded rate that pays the same interest as a lower rate compounded more frequently

18 The Effective Annual Rate EAR can be calculated for any compounding period using the following formula: Effect of more frequent compounding is greater at higher interest rates

19 The Effective Annual Rate The APR and EAR Annual percentage rate (APR) Is actually the nominal rate and is less than the EAR Compounding Periods and the Time Value Formulas Time periods must be compounding periods Interest rate must be the rate for a single compounding period For instance, with a quarterly compounding period the k nominal must be divided by 4 and the n must be multiplied by 4

20 The Present Value of an Annuity— Developing a Formula Present value of an annuity Sum of all of the annuity’s payments Easier to develop a formula than to do all the calculations individually PVFA k,n

21 The Present Value of an Annuity—Solving Problems There are four variables in the present value of an annuity equation The present value of the annuity itself The payment The interest rate The number of periods Problem usually presents 3 of the 4 variables

22 Spreadsheet Solutions Time value problems can be solved on a spreadsheet such as Microsoft Excel™ or Lotus 1-2-3™ To solve for: FV use =FV(k, n, PMT, PV) PV use =PV(k, n, PMT, FV) K use =RATE(n, PMT, PV, FV) N use =NPER(k, PMT, PV, FV) PMT use =PMT(k, n, PV, FV) Select the function for the unknown variable, place the known variables in the proper order within the parentheses, and input 0 for the unknown variable.

23 Spreadsheet Solutions Complications Interest rates in entered as decimals, not percentages Of the three cash variables (FV, PMT or PV) One is always zero The other two must be of the opposite sign Reflects inflows (+) versus outflows (-)

24 Amortized Loans An amortized loan’s principal is paid off regularly over its life Generally structured so that a constant payment is made periodically Represents the present value of an annuity

25 Loan Amortization Schedules Detail the interest and principal in each loan payment Show the beginning and ending balances of unpaid principal for each period Need to know Loan amount (PVA) Payment (PMT) Periodic interest rate (k)

26 Mortgage Loans Mortgage loans (AKA: mortgages) Loans used to buy real estate Often the largest single financial transaction in an average person’s life Typically an amortized loan over 30 years During the early years of the mortgage nearly all the payment goes toward paying interest This reverses toward the end of the mortgage

27 Mortgage Loans Implications of mortgage payment pattern Early mortgage payments provide a large tax savings which reduces the effective cost of a loan Halfway through a mortgage’s life half of the loan has not been paid off Long-term loans like mortgages result in large total interest amounts over the life of the loan

28 The Annuity Due In an annuity due payments occur at the beginning of each period The future value of an annuity due Because each payment is received one period earlier It spends one period longer in the bank earning interest

29 The Annuity Due The present value of an annuity due Formula Recognizing types of annuity problems Always represent a stream of equal payments Always involve some kind of a transaction at one end of the stream of payments End of stream—future value of an annuity Beginning of stream—present value of an annuity

30 Perpetuities A perpetuity is a stream of regular payments that goes on forever An infinite annuity Future value of a perpetuity Makes no sense because there is no end point Present value of a perpetuity A diminishing series of numbers Each payment’s present value is smaller than the one before

31 Continuous Compounding Compounding periods can be shorter than a day As the time periods become infinitesimally short, interest is said to be compounded continuously To determine the future value of a continuously compounded value:

32 Multipart Problems Time value problems are often combined due to complex nature of real situations A time line portrayal can be critical to keeping things straight

33 Uneven Streams and Imbedded Annuities Many real world problems have sequences of uneven cash flows These are NOT annuities For example, if you were asked to determine the present value of the following stream of cash flows $100$200$300 Must discount each cash flow individually Not really a problem when attempting to determine either a present or future value Becomes a problem when attempting to determine an interest rate

34 Calculator Solutions for Uneven Streams Financial calculators and spreadsheets have the ability to handle uneven streams with a limited number of payments Generally programmed to find the present value of the streams or the k that will equate a present value to the stream

35 Imbedded Annuities Sometimes uneven streams of cash flows will have annuities embedded within them We can use the annuity formula to calculate the present or future value of that portion of the problem