Heavy Flavor in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA JET Collaboration Summer.

Slides:



Advertisements
Similar presentations
Heavy-Flavor Interactions in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Workshop.
Advertisements

Analysis of transverse momentum dependence of J/ψ in Heavy-Ion Collisions Xingbo Zhao with R. Rapp Cyclotron Institute + Physics Department Texas A&M University.
R. L. Thews Hard Probes 2004 Lisbon QUARKONIUM FORMATION IN STATISTICAL AND KINETIC MODELS R. L. THEWS UNIVERSITY OF ARIZONA HARD PROBES 2004 LISBON November.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
J/  nuclear modification factor in nucleus-nucleus collisions Xiao-Ming Xu.
Wolfgang Cassing CERN, Properties of the sQGP at RHIC and LHC energies.
Heavy Quark/onium in Hot Nuclear Matter Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA INT Program (Week.
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
Luan Cheng (Institute of Particle Physics, Huazhong Normal University) I. Introduction II. Interaction Potential with Flow III. Flow Effects on Light Quark.
Heavy-Quark Diffusion, Flow and Recombination at RHIC
Ágnes Mócsy, Bad Honnef 08 1 Quarkonia from Lattice and Potential Models Characterization of QGP with Heavy Quarks Bad Honnef Germany, June
Nonperturbative Heavy-Quark Transport at RHIC Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van.
Theoretical Overview of Open Heavy-Flavor at RHIC and LHC Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA.
Quarkonia in Medium and their Fate at Future RHIC Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Workshop.
Finite Size Effects on Dilepton Properties in Relativistic Heavy Ion Collisions Trent Strong, Texas A&M University Advisors: Dr. Ralf Rapp, Dr. Hendrik.
Charmonium Production in Heavy-Ion Collisions Loïc Grandchamp Lawrence Berkeley National Laboratory Texas A&M, Dec. 10 th 2004 w/ R. Rapp.
Dilepton production in HIC at RHIC Energy Haojie Xu( 徐浩洁 ) In collaboration with H. Chen, X. Dong, Q. Wang Hadron2011, WeiHai Haojie Xu( 徐浩洁 )
University of Catania INFN-LNS Heavy flavor Suppression : Langevin vs Boltzmann S. K. Das, F. Scardina V. Greco, S. Plumari.
Lecture 7-8: Correlation functions and spectral functions Relation of spectral function and Euclidean correlation functions Maximum Entropy Method Quarkonium.
TIFR Mumbai India Feb Ágnes Mócsy at RBRC 1 Quarkonium as Signal of Deconfinement Ágnes Mócsy Thanks to Sourendu, Saumen, Rajeev, Rajiv!
Heavy quarkonia in potential models and lattice QCD Péter Petreczky Heavy quark production in heavy ion collisions Purdue University, January 4-6, 2011.
Langevin + Hydrodynamics Approach to Heavy Quark Diffusion in the QGP Yukinao Akamatsu Tetsuo Hatsuda Tetsufumi Hirano (Univ. of Tokyo) /05/09 Heavy.
R AA of J/ψ near mid-rapidity in RHIC at √s NN =200 GeV and in LHC Taesoo Song, Woosung Park, and Su Houng Lee (Yonsei Univ.)
Heavy Quarks + Vector Mesons in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA School of Collective.
Quarkonium Correlators in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Quarkonium Working Group.
Thermal Kinetic Equation Approach to Charmonium Production in Heavy-Ion Collision Xingbo Zhao with Ralf Rapp Department of Physics and Astronomy Iowa State.
In-medium QCD forces for HQs at high T Yukinao Akamatsu Nagoya University, KMI Y.Akamatsu, A.Rothkopf, PRD85(2012), (arXiv: [hep-ph] ) Y.Akamatsu,
Heavy quarks in finite temperature lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Exploring QCD : Deconfinement etc, Newton Institute, Cambridge,
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL SQM 2007, June 24-29, 2007 Thermodynamics of 2+1 flavor QCD for nearly.
Olena Linnyk Charm dynamics from transport calculations Symposium and 10th CBM Collaboration Meeting September 25 – 28, 2007.
Medium Effects in Charmonium Transport Xingbo Zhao with Ralf Rapp Department of Physics and Astronomy Iowa State University Ames, USA Purdue University,
J/ψ production and elliptic flow in relativistic heavy-ion collisions Taesoo Song (Texas A&M Univ., USA) Reference : T. Song, C. M. Ko, S. H. Lee and J.
Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: F. Riek (Texas A&M), H. van Hees (Giessen), V. Greco.
Ágnes Mócsy FIAS & ITP, Frankfurt Quarkonia Correlators above Deconfinement * Calculating correlators * Why interested in quarkonia correlators * Charm.
Ágnes Mócsy - RBRC 1 Ágnes Mócsy Quarkonium Correlators and Potential Models DESY, Hamburg, Oct 17-20, 2007.
Round Table Workshop on NICA Physics Dubna,September 9-12,20091 J/Ψ Production in Heavy Ion Collisions J/Ψ Production in Heavy Ion Collisions Pengfei ZHUANG.
Loïc Grandchamp Lawrence Berkeley National Laboratory “Probing QCD with High Energy Nuclear Collisions” Hirschegg, Jan ’05 with H. van Hees, S.
Theory aspects of quarkonia production in heavy ion collisions Peter Petreczky Current status of the theory:
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Early time dynamics in Heavy Ion Collisions, McGill University, Montréal,
Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA International Conference on Strangeness in Quark Matter 2008.
Comprehensive Analysis of In-Medium Quarkonia at SPS, RHIC + LHC Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College.
Interactions of Heavy Flavor in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Kavli.
Heavy Quark Energy Loss due to Three-body Scattering in a Quark- Gluon Plasma Wei Liu Texas A&M University  Introduction  Heavy quark scattering in QGP.
OPEN HEAVY FLAVORS 1. Heavy Flavor 2 Heavy quarks produced in the early stages of the collisions (high Q2)  effective probe of the high-density medium.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
Heavy Flavor in the sQGP Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With: H. van Hees, D. Cabrera (Madrid),
Yukinao Akamatsu Univ. of Tokyo 2008/11/26 Komaba Seminar Ref : Y. A., T. Hatsuda and T. Hirano, arXiv: [hep-ph] 1.
Heavy quark energy loss in hot and dense nuclear matter Shanshan Cao In Collaboration with G.Y. Qin, S.A. Bass and B. Mueller Duke University.
Ágnes Mócsy - RBRCZimányi 75 Memorial Workshop, Budapest Quarkonium Properties Above Deconfinement Quarkonium Properties Above Deconfinement.
J/  momentum distribution in heavy ion collisions at LHC Xiao-Ming Xu.
Production, energy loss and elliptic flow of heavy quarks at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Hard Probes 2010, Eilat October.
Heavy Flavor in Hot QCD Matter Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Sapore Gravis.
Heavy quarks and charmonium at RHIC and LHC within a partonic transport model Jan Uphoff with O. Fochler, Z. Xu and C. Greiner XLIX International Winter.
Heavy-Flavor Interactions in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA 6 th Workshop.
Heavy Flavor Theory Yukinao Akamatsu (Nagoya/KMI) 2013/07/30PHENIX PHENIX Workshop on Physics Prospects with Detector and Accelerator.
Heavy-Quark Thermalization and Resonances in the QGP Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA With:
Review of ALICE Experiments
Heavy quark potentials and spectral functions Péter Petreczky
Theory aspects of quarkonia production in heavy ion collisions
Heavy-Flavor Transport at FAIR
The puzzling relation between the RAA and the v2 for heavy mesons in a Boltzmann and in a Langevin approach F. Scardina, S.K. Das, S. Plumari, V.Greco.
Perspectives on Heavy-Flavor + EM Probes with Heavy Ions at LHCb
7/6/2018 Nonperturbative Approach to Equation of State and Collective Modes of the QGP Shuai Y.F. Liu and Ralf Rapp Cyclotron Institute + Dept. of Physics.
Yukinao Akamatsu 赤松 幸尚 (Univ. of Tokyo)
Charmonium production in hot and dense matter Péter Petreczky
Yukinao Akamatsu Tetsuo Hatsuda Tetsufumi Hirano (Univ. of Tokyo)
Heavy Quark and charm propagation in Quark-Gluon plasma
Heavy Quarkonium production ITP,Gothe Uni.Frankfurt
Overview of Potential models at finite temperature Péter Petreczky
用重味探测夸克胶子等离子体 Heavy Flavor as a Probe of Quark-Gluon Plasma
Presentation transcript:

Heavy Flavor in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA JET Collaboration Summer School McGill University, Montreal (QC, Canada),

RR and H. van Hees, Heavy-Quark Diffusion as a Probe of the Quark-Gluon Plasma, Nova Publishers; arXiv: [hep-ph] RR, D. Blaschke and P. Crochet, Charmonia and Bottomonia in Heavy-Ion Collisions, Prog. Part. Nucl. Phys. 65 (2010) 209; arXiv: [hep-ph] RR and H. van Hees, Heavy Quarks in the Quark-Gluon Plasma, in Quark-Gluon Plasma 4 (R. Hwa and X.N. Wang, eds.), World Scientific (2010); arXiv: [hep-ph] Review Articles

1.) Introduction: Why Heavy Quarks in URHICs? “Large” scale m Q >>  QCD, T (Q = c, b): pair production essentially restricted to primordial NN collisions → well defined initial condition, flavor conserved thermal relaxation time increased by ~ m Q /T ~ 5-20 → incomplete thermalization, “memory” of re-interaction history simplifications in theoretical treatment → Brownian motion (elastic scattering) → access to soft interactions in QGP / hadronization (coalescence) → transport properties + contact to lattice QCD → potential-type interactions

1.2 Intro II: A “Calibrated” QCD Force  1GeV/fm nonperturbative (gluonic condensate) V(r 0 )=0 => r 0 ~ ¼ fm ~ (0.8GeV) -1  Charm- + Bottomonium spectroscopy well described (effective potential theory, 1/m Q expansion) confining term crucial: E B Coul (J/  ) ~ 0.05 GeV vs. 0.6 GeV expt. Medium modifications ↔ QCD phase structure (de-/confinement) [Matsui+Satz ‘86] V [½ GeV] r [½ fm]

strong medium effects, nonpert.: F(r) > 0 for T ≤ 2T c momentum transfer single heavy quark in QGP 1.3 Intro III: Heavy-Quark Interactions in Medium Q QGP soft Q-Q and Q-medium interactions static + elastic  common description of quarkonia + heavy-quark transport requires bound + scattering states, resummations  thermodynamic T-matrix approach (e.m. plasmas, nucl. matter) - Q

1.4 Intro IV : Heavy-Quark Observables in URHICs Same force operative for quarkonia + heavy-quark transport?! J/  Suppression Heavy-Quark Suppression+Flow

1.) Introduction 2.) One- and Two-Body Correlations  Potential Models  T-Matrix Approach 3.) Charmonia in the QGP  Spectral Functions  Tests with Lattice QCD 4.) Heavy-Flavor Transport  Diffusion Approach  Microscopic Interactions 5.) Heavy Ions I: Open Heavy Flavor 6.) Heavy Ions II: Quarkonia 7.) Conclusions Outline

2.1 Quarkonium Correlators + Spectral Functions Euclidean Correlation Function Correlator Ratio: Spectral Function Relation: [Datta et al ‘04] cc J/  [Asakawa et al ’03, Iida et al ’06, Aarts et al ‘07, Jakovac et al ’07, …] computable in lattice-QCD with good precision Interpretation?!

2-body potential V at finite temperature? 2.2 Potential Models for Spectral Functions well established in vacuum (EFT, lattice) Schrödinger equation in medium correlators: quark rescattering in continuum [Satz et al ’01, Mocsy+ Petreczky ‘05, Alberico et al ’06, Wong ’07, Laine ’07, …] V~F 1 Potential [Mocsy+Petreczky ’05,‘08] good agreement with lQCD correlat. J/  melting at ~1.2 T c continuum with K-factor

Lippmann-Schwinger equation In-Medium Q-Q T-Matrix: Two-Body Scattering Equation [Mannarelli,Cabrera,Riek+RR ‘05,‘06,‘10] Q-Q propagator: - Q-Q propagation     Q → Q scattering zero mode! - Vector channel (j 0 : density) → HQ number susceptibility determined by zero mode!

2.4 Single Heavy-Quark Spectral Fct. + Selfenergy Quark-Induced HQ Selfenergy Selfconsistency problem! Spectral Function (propagator) Gluon-Induced HQ Selfenergy: - condensate-induced: nonperturbative, low T, positive - thermal Debye cloud: perturbative, large T, negative

2.5 Heavy-Quark Free Energy in Lattice QCD F 1 (r,T) = U 1 (r,T) – T S 1 (r,T) Potential?! (a) Free energy F 1 => weak QQ potential, small Q “selfenergy” F 1 (r=∞,T)/2 (b) Internal Energy U 1 (U = ‹H int ›) => strong QQ potential, large Q “selfenergy” U 1 (r=∞,T)/2 → compensation in E  = 2m Q * - E B F, U, S thermodynamic quantities (0-point functions), potential: 4-point fct. Entropy: many-body effects [Kaczmarek+Zantow ’05] - -

Corrections to static potential - Relativistic: magnetic “Breit” correction: V Q1Q2 (r) → V Q1Q2 (r) ( 1 – v 1 · v 2 ) (↔ Poincaré-invariance, pQCD) - Retardation: 4-D → 3-D reduction of Bethe-Salpeter eq. (off-shell) 2.6 Field Theoretic Approach to Free Energy in QGP [Brown et al ‘52, ‘05]  s ~ 0.3 F av [GeV] [Riek+RR ‘10] effective propagators: Coulomb + string fit 4 parameters to lattice-QCD data [Megias et al ‘07]

2.7.1 Constraints I: Vacuum Spectroscopy Quarkonia D-Mesons no hyperfine splitting (bare) masses adjusted to ground state ~ ±50 MeV accuracy

Born Approximation compared to Perturbative QCD Constraints II: High-Energy Scattering Breit correction essential

2.8 Brueckner Theory of Heavy Quarks in QGP 2-body potential QQ T-matrix Qq T-matrix Q → Q 0-modes Quark selfenergy QQ evolution (rate equation) Q spectra + v 2 (Langevin) spectral fcts./ eucl. correlat. quark-no. susceptibility lattice data exp. data Input Process Output Test - -

1.) Introduction 2.) One- and Two-Body Correlations  Potential Models  T-Matrix Approach 3.) Charmonia in the QGP  Spectral Functions  Tests with Lattice QCD: Eucl. Correlators, Susceptibility 4.) Heavy-Flavor Transport  Diffusion Approach  Microscopic Interactions 5.) Heavy Ions I: Open Heavy Flavor 6.) Heavy Ions II: Quarkonia 7.) Conclusions Outline

J/  Dissociation Cross Section 3.1 Charmonium Widths in QGP → sensitive to binding energy (i.e., color screening) q [Grandchamp+RR ’01] E B ≥ T : gluo-dissociation E B < T : quasi-free dissociation [Bhanot+Peskin ’79] J/  lifetime ~ 1-4 fm/c J/  Dissociation Rates  s ~0.25

3.1.2 Relation of Quarkonium Widths to EFT Landau damping Singlet-octet transition q gluo-dissosciation [Bhanot+Peskin ‘85] “quasi-free” dissosciation

U-potential, selfconsist. c-quark width Spectral Functions - J/  melting at ~1.5T c -  c melting at ~T c -  c ~ 100MeV Correlator Ratios - rough agreement with lQCD within uncertainties 3.2 Charmonia in QGP: T-Matrix Approach [Mocsy+ Petreczky ’05+’08, Wong ’06, Cabrera+RR ’06, Beraudo et al ’06, Satz et al ’08, Lee et al ’09, Riek+RR ’10, …] [Aarts et al ‘07]

selfcons. c-quark width Spectral Functions - J/  melting at ~1.1T c -  c melting at ≤ T c -  c ~ 50MeV Correlator Ratios - slightly worse agreement with lQCD T-matrix Approach with F-Potential [Riek+RR ’10] [Aarts et al ‘07]

3.3 Charm-Quark Susceptibility in QGP sensitive to in-medium charm-quark mass finite-width effects can compensate in-medium mass increase [Riek+RR ‘10] 2 → →  → 0 m « T

1.) Introduction 2.) One- and Two-Body Correlations  Potential Models  T-Matrix Approach 3.) Charmonia in the QGP  Spectral Functions  Tests with Lattice QCD 4.) Heavy-Flavor Transport  Diffusion Approach  Microscopic Interactions (pQCD, AdS/CFT, T-mat) 5.) Heavy Ions I: Open Heavy Flavor 6.) Heavy Ions II: Quarkonia 7.) Conclusions Outline

4.1 Heavy-Quark Diffusion in Matter Boltzmann equation for HQ phase-space distribution f Q neglect external field, homogenous medium transition rate encodes microscopic interaction (scattering amplitude) expand transition rate in momentum transfer k ~ T << p ~ √2m Q T

Brownian Motion, long-time solution: thermalization rate diffusion coeff. Fokker Planck Equation Q [Svetitsky ’87, Mustafa et al ’98, Hees+RR ’04, Teaney+Moore ’04, Gubser ‘07, Peshier ’09, Gossiaux et al ’08, Alam et al ’09, …] Einstein relation  transport coefficient(s)

4.2.1 Leading-Order Perturbative QCD 4.2 Elastic Heavy-Quark Scattering in the QGP gluon exchange regularized by Debye mass: dominated by forward scattering thermalization time   -1  =  therm ≥ 20 fm/c long (T≤ 300MeV,  s =0.4) [Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore‘04]

4.2.2 Effective Resonance Model Postulate D-meson resonances in “sQGP” close to T c cc _ q _ q parameters: m D, G D [van Hees+RR ’04] 3-4 times faster thermalization than LO-pQCD (  therm ~ 5 fm/c ~  QGP ) falling 3-momentum dependence D

4.2.3 Perturbative QCD with Running Coupling [Peshier ‘07] QCD coupling run to  D ~ gT rather than 2  T reduced Debye mass [Gossiaux+ Aichelin ‘08] factor ~10 increase in heavy-quark drag coefficient perturbative regime? Need to resum large diagrams… full NLO calculation gives similar effect [Caron-Huot+Moore ‘08]

4.2.4 AdS/CFT-QCD Correspondence [Gubser ‘07] match energy density (d.o.f = 120 vs. ~40) and coupling constant (heavy-quark potential) to QCD 3-momentum independent  [Herzog et al, Gubser ‘06] ≈ (4-2 fm/c) -1 at T= MeV Lat-QCD T QCD ~ 250 MeV

4.2.5 Thermodynamic T-Matrix meson/diquark resonances for T < 1.5 T c resummation suppresses repulsive channels (alternating sign in Born series of T-matrix) [Riek+RR ‘10]

Thermalization Rate from T-Matrix thermalization 4 (2) times faster using U (F) as potential than pert. QCD momentum dependence essential (nonpert. effect ≠ K-factor!) [Riek+RR ‘10]  c [1/fm]

4.3 Summary: Charm-Quark Transport in QGP AdS/CFT ~ Coulomb, marked T-dependence, p-independent T-matrix thermalization 4 (2) times faster for U (F) than pert. QCD running coupling (not shown) similar to AdS/CFT Thermalization Rate  c (p=0) [1/fm] T [GeV]

4.4 Thermal Relaxation of Charm in Hadron Matter pion gas: - consistent with unitarized HQET - factor 10 smaller than Heavy-Meson  PT substantial contributions from resonance gas employ D-hadron scattering amplitudes from effective Lagrangians [ He,Fries+RR ‘11]  D [fm -1 ] [Cabrera et al ‘11 ] [ Laine ‘11]

4.4.2 D-Meson Relaxation Rate in Hadron Matter thermal relaxation time in hadron resonance-gas as low as  D ≈ 10fm/c chemical off-equilibrium below T ch significant expect ~20% effect from hadronic phase at RHIC/LHC  D [fm -1 ]

2.8 Brueckner Theory of Heavy Quarks in QGP 2-body potential QQ T-matrix Qq T-matrix Q → Q 0-modes Quark selfenergy QQ evolution (rate equation) Q spectra + v 2 (Langevin) spectral fcts./ eucl. correlat. quark-no. susceptibility lattice data exp. data Input Process Output Test - -

4.5 Summary of Charm Diffusion in Matter Shallow minimun around T c ?! Quark-Hadron Continuity?! 20% reduction by non-perturbative HQ-gluon scattering Hadronic Matter vs. QGP vs. Lattice QCD (quenched) [He et al ’11, Riek+RR ’10, Ding et al ‘11, Gavai et al ‘11] AdS/CFT

1.4 Intro IV : Heavy-Quark Observables in URHICs Same force operative for quarkonia + heavy-quark transport?! J/  Suppression Heavy-Quark Suppression+Flow

1.) Introduction 2.) One- and Two-Body Correlations  Potential Models, T-Matrix Approach 3.) Charmonia in the QGP  Spectral Functions, Eucl. Correlators, Susceptibility 4.) Heavy-Flavor Transport  Diffusion Approach  Microscopic Interactions 5.) Heavy Ions I: Open Heavy Flavor  Bulk Evolution, Hadronization  Langevin Simulations, Observables 6.) Heavy Ions II: Quarkonia 7.) Conclusions Outline

4.) Heavy-Quark Diffusion in Heavy-Ion Collisions 4.1 Bulk-Medium Evolution updated ideal 2+1D hydrodynamics (based on AZHYDRO ) - lattice EoS, initial flow, compact initial conditions, partial chemical equilibrium in hadronic phase - multistrange / bulk freezeout at T ch ~ 160MeV / T fo ~ 110MeV - v 2 saturates at T ch, good light-/strange-hadron phenomenology [He et al ’11] [Kolb+Heinz ’03]

4.2 Hadronization of Charm Quarks Fragmentation: c → D + X, incompatible with thermalization Coalescence: c + q → D → Resonance Recombination Model - 4-mom. conservation, correct thermal equilibrium limit - implement on hydro hypersurface with full space-mom. correl. [Ravagli +RR ’07] Conceptual Consistency: same interaction (T-matrix) underlying diffusion + hadronization!

4.3 Dynamical Scheme for Heavy Quarks in URHICs [He et al ’11] Conceptual Consistency - diffusion ↔ hadronization: strong coupling (non-pert.) → resonance correlations → recombination weak coupling (perturb.) → fragmentation - diffusion ↔ bulk medium: strong coupling → hydrodynamics, weak coupling → transport initial cond. (pp + N coll, Cronin) c-quark diffusion in QGP liquid (T-matrix) c + q → D resonance recombination D-meson diffusion in hadron liquid c D

4.4.1 Heavy-Flavor Transport I: e ± Spectra at RHIC hadronic resonances at ~T c ↔ quark coalescence connects 3 “pillars” of RHIC: hydro + strong coupl. + coalescence [Teaney+Moore ’04, Mustafa ’05, Hees et al ’05, Gossiaux et al ’09, Akamatsu et al ‘09, Alam et al ’10, Beraudo et al ’10, …] e ± Decays from c/b Langevin in Hydro Hadronic Diffusion [He et al ‘11] (T-matrix interaction)

4.4.2 HF Transport II: D-Meson at RHIC D-meson flow-bump?! hadronization (resonance recomb.) acts as extra interaction v 2 imparted from hadronic phase significant (20-30%) Nuclear Modification Factor Elliptic Flow [He et al ‘12]

4.4.3 HF Transport III: D s -Meson Predicts meson-R AA > 1 ! requires QGP diffusion, coalescence + strangeness enhancement quantitative measure of hadronic phase: D vs D s Nuclear Modification Factor Elliptic Flow [He et al ‘12]

4.5 HF Transport at LHC pQCD diffusion calculations with running coupling + red.  D consistent description of suppression and flow challenging importance of a good low-p t measurement Nuclear Modification Factor Elliptic Flow

1.) Introduction 2.) One- and Two-Body Correlations 3.) Charmonia in the QGP  Spectral Functions, Eucl. Correlators, Susceptibility 4.) Heavy-Flavor Transport  Diffusion Approach, Microscopic Interactions 5.) Heavy Ions I: Open Heavy Flavor  Bulk Evolution, Hadronization  Langevin Simulations, Observables 6.) Heavy Ions II: Quarkonia  Rate Equation + Medium Effects  Charmonium + Bottomonium Observables 7.) Conclusions Outline

reaction rate equilibrium limit (  -width) 5.1 Transport Approach to Quarkonium Evolution J/  D D - c - c [PBM et al ’01, Gorenstein et al ’02,Thews et al ’01, Grandchamp+RR ’01, Ko et al ’02, Cassing et al ’03, Zhuang et al ’05, …] J/  + g c + c + X ← → - Regeneration in QGP + HG: detailed balance:  mc*mc* BB Input from Thermodynamic T-Matrix (weak/strong binding) Rate Equation:

5.2 Inputs and Parameters Input - J/  (  c,  ’), c-c production cross sections, b feeddown [p-p data] - “Cold Nuclear Matter”: shadowing, nuclear absorption, p t broadening [p/d-A data, theo. est.] - Thermal fireball evolution: thermalization time (↔ initial T 0 ), expansion rate, lifetime, T c, freezeout … [A-A hadron data, hydrodynamics] Parameters - strong coupling  s controls  diss - schematic c-quark off-equilibrium effects: N  eq (  )~ N  therm (  ) · [1-exp(-  /  c eq )] - q

5.3 Inclusive J/  in Thermal Media at SPS + RHIC 2 parameters (  s ~0.3, charm relax.  c eq = 6(3) fm/c) different composition in two scenarios U-Potential F-Potential thermal rate equation through QGP / T c / HG for J/ ,  c  ’ spectral properties ↔  , N  eq formation time effects bottom feeddown [Zhao+RR ‘10]

5.3.2 J/  p T Spectra + Elliptic Flow at RHIC small v 2 limits regeneration, but does not exclude it [Zhao+RR ‘08 ] strong binding (U potential) high p T : - formation time ( ) - bottom feeddown … [Karsch+Petronzio ’87, Blaizot+Ollitrault ‘87]

5.4 J/  at LHC regeneration component increases, still net suppression appreciable uncertainty from “shadowing” good consistency of transport approaches statistical model requires strong shadowing [Zhao+RR ‘11 ] Mid-Rapidity Forward Rapidity

5.4.2 J/  at LHC II: p t -Spectra + v 2 confirms composition of regeneration + primordial [Zhao+RR ‘11 ] Fireball/T-matrix Hydro/Gluo-Diss [Zhuang at al ‘12 ]

5.4.3 J/  at LHC III: High-p t – ATLAS+CMS underestimate for peripheral (expected from RHIC) (spherical fireball reduces surface effects …) [Zhao+RR ‘11 ]

5.5  at RHIC and LHC sensitive to color-screening + early evolution times RHIC → LHC → [Grandchamp et al ’06, Emerick et al ‘11] Weak Binding Strong Binding

6.) Conclusions Low-momentum HQ interactions elastic + nonperturbative → quarkonia + HQ transport ↔ thermodynamic T-matrix Versatile constraints + observables - heavy-quark diffusion + susceptibilities - quarkonia dissolution + euclidean correlator ratios heavy-ion data lattice “data” Open problems: - input potential (neither U nor F?), correlations near T c - radiative scattering (high p t ), finite  q … Heavy-Quark Phenomenology: - consistency diffusion - hadronization; hadronic phase - consistency of R AA and v 2, importance of “low” p t - D s enhancement? …

dashed lines: gluo-dissociation solid lines: quasifree dissociation similar to full NLO calculation Momentum Dependence of Inelastic Width _ [Zhao+RR ‘07] [Park et al ‘07]

4.3 J/  at Forward Rapidity at RHIC [Zhao+ RR ‘10]