Non-equilibrium critical phenomena in the chiral phase transition 1.Introduction 2.Review : Dynamic critical phenomena 3.Propagating mode in the O(N) model.

Slides:



Advertisements
Similar presentations
With Y. Seo, J.P. Shock, D. Zoakos(0911.xxxx) CY.Park, KH. Jo, BH Lee( )
Advertisements

Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
R. Yoshiike Collaborator: K. Nishiyama, T. Tatsumi (Kyoto University)
Duke University Chiho NONAKA in Collaboration with Masayuki Asakawa (Kyoto University) Hydrodynamical Evolution near the QCD Critical End Point June 26,
Kazuya Nishiyama Kyoto University Collaborator: Toshitaka Tatsumi, Shintaro Karasawa, Ryo Yoshiike Quarks and Compact Stars 2014 October 2014, PKU, Beijing.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Chiral dynamics in hard processes M.V.Polyakovhttp:// Ruhr-University Bochum  Chiral symmetry breaking - the phenomenon shaping.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
O(N) linear and nonlinear sigma-model at nonzeroT within the auxiliary field method CJT study of the O(N) linear and nonlinear sigma-model at nonzeroT.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Functional renormalization – concepts and prospects.
Functional renormalization – concepts and prospects.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
1 Charge Density Fluctuations in the presence of spinodal instabilities Quark-Gluon Plasma - symmetric phase color superconductor Universal properties.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Has the critical temperature of the QCD phase transition been measured ?
Functional renormalization group equation for strongly correlated fermions.
Phase Fluctuations near the Chiral Critical Point Joe Kapusta University of Minnesota Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica, January 2010.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Lecture 11: Ising model Outline: equilibrium theory d = 1
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Universal Behavior of Critical Dynamics far from Equilibrium Bo ZHENG Physics Department, Zhejiang University P. R. China.
Equations of State with a Chiral Critical Point Joe Kapusta University of Minnesota Collaborators: Berndt Muller & Misha Stephanov; Juan M. Torres-Rincon;
Quark Correlations and Single Spin Asymmetry Quark Correlations and Single Spin Asymmetry G. Musulmanbekov JINR, Dubna, Russia Contents.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Higgs Mechanism at Finite Chemical Potential with Type-II Nambu-Goldstone Boson Based on arXiv: v2 [hep-ph] Yusuke Hama (Univ. Tokyo) Tetsuo Hatsuda.
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
Variational Approach in Quantum Field Theories -- to Dynamical Chiral Phase Transition -- Yasuhiko TSUE Physica Division, Faculty of Science, Kochi University,
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Pions emerging from an Arbitrarily Disoriented Chiral Condensate. Chandrasekher Mukku Deptt. of Mathematics & Deptt. of Computer Science & Applications.
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
Vlasov Equation for Chiral Phase Transition
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Future Perspectives on Theory at RBRC Color Glass Condensate: predictions for: "ridge", elliptical flow.... Quark-Gluon Plasma: fluctuations, effects of.
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
Dynamical equilibration of strongly- interacting ‘infinite’ parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein,
SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL G. Musulmanbekov JINR, Dubna, Russia
The axial anomaly and the phases of dense QCD
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
QCD 相転移の臨界点近傍における 非平衡ダイナミクスについて 北沢正清(京大), 国広悌二(京大基研 ), 根本幸雄 (RIKEN-BNL) 0 T  の1コメ ント Chiral symmetry breaking Color superconductivity (CSC) critical endpoint.
Helmholtz International Summer School, Dubna, 24 July 2008 Pion decay constant in Dense Skyrmion Matter Hee-Jung Lee ( Chungbuk Nat’l Univ.) Collaborators.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Chiho Nonaka QM2009 Nagoya University Chiho NONAKA March 31, Matter 2009, Knoxville, TN In collaboration with Asakawa, Bass, and Mueller.
Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Intoduction to topological order and topologial quantum computation.
Spectral functions in functional renormalization group approach
Lattice QCD at finite temperature Péter Petreczky
“QCD Kondo effect” KH, K. Itakura, S. Ozaki, S. Yasui,
Determining order of chiral phase transition in QCD from bootstrap
NGB and their parameters
Coarsening dynamics Harry Cheung 2 Nov 2017.
Strangeness and charm in hadrons and dense matter, YITP, May 15, 2017
Aspects of the QCD phase diagram
QCD and Heavy-ion Collisions
Biointelligence Laboratory, Seoul National University
Infrared Slavery Above and Hadronic Freedom Below Tc
Hyun Kyu Lee Hanyang University
A possible approach to the CEP location
Theory on Hadrons in nuclear medium
Presentation transcript:

Non-equilibrium critical phenomena in the chiral phase transition 1.Introduction 2.Review : Dynamic critical phenomena 3.Propagating mode in the O(N) model 4.Over-damping near the critical point 5.Conclusion Kazuaki Ohnishi (NTU) K.O., Fukushima & Ohta : NPA 748 (2005) 260 K.O. & Kunihiro : PLB 632 (2006) 252

Strong interaction between hadrons (proton, neutron, pion, ρ-meson) QCD (quark & gluon) Chiral symmetry in the u-, d-quark sector 1. Introduction

Ferromagnet O(3) symmetry is spontaneously broken NG mode = spin wave Spontaneous Breaking of Chiral symmetry pion is the massless Nambu-Goldstone particle 1. Introduction

Static (Equilibrium) critical phenomena Dynamic (Non-equilibrium) critical phenomena Heavy Ion Collision, Early universe Quark-Gluon-Plasma phase Color-Superconducting phase Hadron phase Early universe Heavy Ion Collision (RHIC,LHC) 1st TCP 2nd 1. Introduction Lattice simulation, Effective theory, Universality argument, etc. Real world

Anomalous dynamic critical phenomena Critical slowing down Softening of propagating modes Divergence of transport coefficients... Long relaxation time Slow motion of long wavelength fluctuations of Slow variables 2. Review : Dynamic Critical Phenomena Non-equilibrium, time-dependent Non-equilibrium state Equilibrium state Relax

2. Review : Dynamic Critical Phenomena 2 kinds of slow variables 1. Order parameter 2. Conserved quantity Flat potential Continuity Eq. Slow variables (Order parameter & Conserved quantities) are the fundamental degrees of freedom in the critical slow dynamics

2 types of Slow modes for slow variables 1. Diffusive (Relaxational) mode 2. Propagating (Oscillatory) mode (Spin wave, Sound wave, Phonon mode, etc) t t Propagating mode (Damped Oscillatory mode) Diffusive mode (Damping mode) 2. Review : Dynamic Critical Phenomena

Spectral func. for slow variables ( : fixed) ( Dynamic critical exponent) Critical slowing down Softening Propagating mode pole with Real and Imaginary parts Diffusive mode pole with only Imaginary part Dynamic scaling hypothesis 2. Review : Dynamic Critical Phenomena

Static universality class critical behavior (critical exponents) is identical if symmetry and (spatial) dimension are same. Ferromagnet and anti-ferromagnet belong to the O(3) universality class Chiral transition belongs to the same universality class as ferromagnet and anti-ferromagnet Pisarski & Wilczek:PRD29(1984) Review : Dynamic Critical Phenomena Universality class

1.Whether the order parameter is conserved or not 2.What kinds of conserved quantities in the system Whole critical points in condensed matter physics (Ferromagnet, Anti-Ferromagnet, λtransition, Liquid-Gas, etc) have been classified into model A, B, C, Review : Dynamic Critical Phenomena Classification scheme Dynamic universality class Slow variables Hohenberg & Halperin: Rev.Mod.Phys.49 (1977) 435

Dynamic universality class of chiral transition Slow variables for Chiral phase transition Meson field Chiral charge Energy Momentum Order parameter (Non-conserved) Conserved quantities Slow variables for Anti-Ferromagnet Staggered Magnetization Magnetization Energy Momentum Order parameter (Non-conserved) Conserved quantities Rajagopal & Wilczek: NPB 399 (1993) 395 Meson mode is a diffusive mode 2. Review : Dynamic Critical Phenomena Chiral transition belongs to anti-ferromagnet

Hatsuda & Kunihiro: PRL 55 (1985) 158 Meson (particle) is an oscillatory mode of field Diffusive mode Rajagopal & Wilczek Propagating mode Hatsuda & Kunihiro 2. Review : Dynamic Critical Phenomena Meson mode is a propagating mode ?

3. Propagating mode in the O(N) model Langevin Eq. Brownian particle Zwanzig J.Stat.Phys.9(1973)215 O(N) Ginzburg-Landau potential Meson mode (Propagating mode) (K.O., Fukushima & Ohta: NPA 748 (2005) 260) (Koide & Maruyama: NPA 742 (2004) 95) Square of propagating velocity Damping constant Canonical momentum conjugate to order parameter Neither Order parameter nor Conserved quantity!

Renormalization Group (RG) analysis of the order parameter fluctuation with canonical momentum K.O. & Kunihiro: PLB 632 (2006) Over-damping near the critical point Langevin Eq.

Large damping constant limit of the propagating mode If we impose the large damping condition, then the propagating mode is over-damped. For, we can integrate out explicitly the faster degree of freedom to obtain (Ma: “Modern theory of critical phenomena” (1976)) is the faster degree of freedom is the slower degree of freedom t t Oscillatory (propagating) mode Over-damped (diffusive) mode 4. Over-damping near the critical point Langevin eq. for a diffusive mode

RG analysis of the Langevin Eq. for the propagating mode RG transformation ● Integration of short-wavelength fluctuations ● Scale transformation : Recursion relation : 4. Over-damping near the critical point

ε-expansion Green func. Green func. for diffusive mode Self-energy Full Green func. New parameters ・・・ 4. Over-damping near the critical point

Recursion Relation We can find fixed points in the space Usual recursion for the static G-L theory Dynamic parameters Gaussian & Wilson-Fisher (WF) fixed points (Hohenberg & Halperin: Rev.Mod.Phys. 49 (1977) 435) 4. Over-damping near the critical point

Two fixed points with respect to Wilson-Fisher fixed point Crossover between the two fixed points Propagating mode becomes over-damped near the critical point 4. Over-damping near the critical point Gaussian WF z=1: Propagating mode ( ) ・・・ unstable z=2: Overdamped mode ( ) ・・・ stable

Overdamped (diffusive) mode Anti-ferromagnet Rajagopal & Wilczek (1993) Particle (propagating) mode Hatsuda & Kunihiro (1985) The fate of meson mode near the chiral transition 4. Over-damping near the critical point Pion and sigma are not able to propagate and lose a particle-like nature

Ordered phase (Ferroelectric) Disordered phase Order parameter fluctuation ・・・ phonon mode Phonon mode near the ferroelectric transition 4. Over-damping near the critical point

Over-damping as a crossover between the two fixed points Universality of the propagating behavior Phonon mode is over-damped near the critical point Experimental fact Almairac et al. (1977) Softening with z=1 ・・・ Propagating fixed point Over-damping region (z=2) ・・・ Diffusive fixed point 4. Over-damping near the critical point

 Propagating mode in the O(N) model Meson mode at chiral transition Phonon mode at ferroelectric transition Canonical momentum is necessary as a slow variable  RG analysis of the propagating mode Meson mode near chiral transition is over-damped! Anti-ferromagnet (Rajagopal & Wilczek) Phonon mode near ferroelectric transition 5. Conclusion 2 fixed points for the propagating and diffusive modes Over-damping near the critical point