LOCAL PROBE STUDIES IN MANGANITES AND COMPLEX OXIDES V.S. Amaral 1, A.M.L. Lopes 2, J.P. Araújo 3, P.B. Tavares 4, T.M. Mendonça 3,5, J. S. Amaral 1, J.N.

Slides:



Advertisements
Similar presentations
Portuguese groups at ISOLDE - CERN
Advertisements

First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Neutron and X-ray Scattering Studies of Spin, Charge and Orbital Order in TM Oxides Andrew Boothroyd Department of Physics, Oxford University magnetization.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 George Sawatzky.
Dynamic Phase Separation in Manganites Luis Ghivelder IF/UFRJ – Rio de Janeiro Main collaborator: Francisco Parisi CNEA – Buenos Aires.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid
Electronic structure of La2-xSrxCuO4 calculated by the
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Effect of iron doping on electrical, electronic and magnetic properties of La 0.7 Sr 0.3 MnO 3 S. I. Patil Department of Physics, University of Pune March.
Physics of multiferroic hexagonal manganites RMnO 3 Je-Geun Park Sungkyunkwan University KIAS 29 October 2005.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING.
1 The investigation of charge ordering in colossal magnetoresistance Shih-Jye Sun Department of Applied Physics National University of Kaohsiung 2005/9/30.
Magnetism in Matter Electric polarisation (P) - electric dipole moment per unit vol. Magnetic ‘polarisation’ (M) - magnetic dipole moment per unit vol.
Magnetism III: Magnetic Ordering
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
Frank Bridges, UCSC, DMR Mn La/Ca O Figure 1 Figure 2 Local Structure Studies of La 1-x Ca x MnO 3 : Evidence for Magnetic Dimers We have used.
Probing Electrostructural Coupling on Magnetoelectric CdCr 2 S 4 1 IFIMUP and IN- Institute of Nanoscience and Nanotechnology and Department of Physics,
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Ion implantation doping of perovskites and related oxides Ulrich Wahl Instituto Tecnológico e Nuclear (ITN), Sacavém, Portugal Collaborators: João Guilherme.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
A study of Fe – substituted (La 0.8 Sr 0.2 ) 0.95 MnO 3-y as cathode material for solid oxide fuel cells B. N. Wani, Mrinal Pai, S.J. Patwe, S. Varma,
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Nonlinear Optical Spectroscopy in Multiferroics Speaker: Zuanming Jin.
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Berry Phase Effects on Electronic Properties
High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,
Juliana Marques Ramos 1,2 German Thesis Advisor: Reiner Vianden 2, Brazilian Thesis Advisor: Artur Wilson Carbonari 1 Collaborators: João Guilherme Martins.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
PROPOSAL TO THE ISOLDE COMMITTEE – INTC/P258-Addendum 1 Study of Local Correlations of Magnetic and Multiferroic Compounds Aveiro 1, L’ Aquila 2, Lisboa.
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Direct identification of interstitial Mn in Ga 1-x Mn x As and evidence of its high thermal stability Lino Pereira 1, 2, 3 U. Wahl 2, J. G. Correia 2,,
Intraatomic vs Interatomic Interactions John B. Goodenough (University of Texas at Austin) DMR Intellectual Merit Localized electrons have stronger.
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Magnetic Neutron Diffraction the basic formulas
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Perturbed Angular Correlation studies of Hg coordination mechanisms on functionalized magnetic nanoparticles P. Figueira, M. Silva Martins, A. L. Daniel-da-Silva,
SOLID STATE ISOLDE 40èmes Journées des Actinides
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Spin Waves in Metallic Manganites Fernande Moussa, Martine Hennion, Gaël Biotteau (PhD), Pascale Kober-Lehouelleur (PhD) Dmitri Reznik, Hamid Moudden Laboratoire.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
PAC study of the magnetic and structural first-order phase transition in MnAs J. N. Gonçalves 1 V. S. Amaral 1, J. G. Correia 2, A. M. L. Lopes 3 H. Haas.
Lattice location studies of the “anti-site” impurities As and Sb in ZnO and GaN Motivation 73 As in ZnO 73 As in GaN 124 Sb in GaN Conclusions U. Wahl.
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
Figure 2: raw absorption spectra for all the samples: EXAFS region. In red is the Fourier filtered nearest neighbour signals. XANES features reflects the.
Jeroen van den Brink LaOFeAs -- multiferroic manganites Krakaw 19/6/2008 Gianluca Giovannetti,Luuk Ament,Igor Pikovski,Sanjeev Kumar,Antoine Klauser,Carmine.
1 WORKSHOP AND USERS February 2007 Lattice site location of implanted Fe in SrTiO 3 and lattice damage recovery studies A. C. Marques 1,4 *, U. Wahl 1,2,
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Question on Van der Waals Interactions
Emission Channeling with Short-Lived Isotopes: lattice location of impurities in semiconductors and oxides L.M.C. Pereira1 , L. Amorim1, J.P. Araújo4,
Multiferroics as Data Storage Elements
Hyperfine interaction studies in Manganites
Presentation transcript:

LOCAL PROBE STUDIES IN MANGANITES AND COMPLEX OXIDES V.S. Amaral 1, A.M.L. Lopes 2, J.P. Araújo 3, P.B. Tavares 4, T.M. Mendonça 3,5, J. S. Amaral 1, J.N. Gonçalves 1,5, J.G. Correia 5,6 and IS390 Collaboration 1 Dep. Física and CICECO, Univ. Aveiro, Aveiro, Portugal; 2 CFNUL, Univ. Lisboa, Lisboa, Portugal; 3 Dep. Física and IFIMUP, Univ. Porto, Porto, Portugal; 4 CQ-VR, UTAD, Vila Real, Portugal; 5 CERN EP, CH 1211 Geneve 23, Switzerland; 6 ITN, E.N. 10, P-2685 Sacavém, Portugal

OUTLINE Manganites and intrinsic complexity Charge-ordering scenarios, phase separation Multiferroic systems Local Probe Studies Hyperfine technique: Perturbed Angular Correlations Probing electric fields in Pr 1-x Ca x MnO 3 system Phase separation, polaron dynamics in LaMnO 3+  and La 1-x Ca x MnO 3 Multiferroics: RMnO 3 Other oxide systems Perspectives

Manganites Electron doping (charge and orbital) Structure Magnetic Interactions AMnO 3 ( A=La, Pr, Nd &Ca, Sr...) base structure perovkite Mixed valence: Mn 3+ : Mn 4+ Doping with divalent ions (R-D)MnO 3 Mn 3+  3d 4 La 3+ O 2- egeg t 2g  crystal field splitting JT effect If only Mn 3+  collective JT distortion O Introduction to Manganites

Pr 1-x Ca x MnO 3 Magnetic - Electric Phase Diagram CO/OO signatures Small Ionic radii Pr 3+ =1.30 Å, Ca 2+ =1.34 Å -Orthorhombic structure for all x Small overlap between Mn & O orbitals -Insulator for all x Charge Order is stabilized over a broad range of compositions Introduction to Manganites Mn 3+ /Mn 4+ localization in a ordered way

Phase separation and complexity Atomic-scale coexistence Renner et al, Nature 416, 518 (2002) Bi 0.24 Ca 0.76 MnO 3 Charge contrast: occupied and unnocupied states Clusters with CE type arrangement in the paramagnetic phase Ma et al, Phys Rev. Lett 95, (2005) (La,Pr) 5/8 Ca 3/8 MnO 3 20x10 nm

OUTLINE Manganites and intrinsic complexity Charge-ordering scenarios, phase separation Multiferroic systems Local Probe Studies Hyperfine technique: Perturbed Angular Correlations Probing electric fields in Pr 1-x Ca x MnO 3 system Phase separation, polaron dynamics in LaMnO 3+  and La 1-x Ca x MnO 3 Multiferroics: RMnO 3 Other oxide systems Perspectives

Multiferroic materials Inversion symmetry breaking (charge-orbital related) Dislocated spin density waves Magneto-electric coupling Nature Materials 3, 164, (2004) Tb/YMn 2 O 5 Nature, 429, 392 (2004) Magnetic field induces a sign reversal of the electric polarization

Multiferroic manganites Van Aken, thesis univ. Groningen Perovskite phases octahedra Hexagonal phase Trigonal bipyramid AMnO 3

Ferroelectricity due to Charge Ordering in Pr 1-x Ca x MnO 3 New paradigm for ferroelectrics, but it has been hard to prove experimentally that electric polarization exists in CO Pr 1-x Ca x MnO 3 (due to finite conductivity) New scenario for the Charge Ordered State Theoretical work predicts the possibility of local electric dipole moments in CO manganites Ferroelectricity Inversion symmetry is broken = Site centred COBond centred CO + D.Efremov et al, Nature Materials, 3,853 (2004) J. Van den Brink, D.I. Khomskii, J. Phys. Cond. Matt 20, (2008) Charge ordered manganites

OUTLINE Manganites and intrinsic complexity Charge-ordering scenarios, phase separation Multiferroic systems Local Probe Studies Hyperfine technique: Perturbed Angular Correlations Probing electric fields in Pr 1-x Ca x MnO 3 system Phase separation, polaron dynamics in LaMnO 3+  and La 1-x Ca x MnO 3 Multiferroics: RMnO 3 Other oxide systems Perspectives

Two-Photon PERTURBED ANGULAR CORRELATION Hyperfine splitting  Electric field gradient / Magnetic hyperfine field V zz - EFG principal component  - Asymmetry parameter B hf - Magnetic hyperfine field |I i, m i 〉 , Q L2L2 |I, m 〉 |I f, m f 〉 11 22 L1L1  EE EiEi E EfEf Local Probe Studies / Technique Time dependence gives access to splitting of hyperfine levels Probe nucleus: Q – quadrupolar moment  - magnetic moment

Two-Photon PERTURBED ANGULAR CORRELATION Samples implanted with radioactive 111m ISOLDE/CERN E=60 keV, Dose < at/cm 2 111m Cd: I=5/2 and t 1/2 = 85 ns Q=0.83 b and  =  n Samples T=700 ºC in air CdPr/Ca Pr/Ca site Local Probe Studies / Technique

PROPOSAL TO THE ISOLDE COMMITTEE – INTC/P132 Add1 IS390-Studies of Colossal Magnetoresistive Oxides with Radioactive Isotopes Aveiro 1, Dublin 2, Leuven 3, Lisboa 4, Moscow 5, Orsay 6, Porto 7, Sacavém 8, Stuttgart 9, Tokyo 10, Tsukuba 11 Vila Real 12 and the ISOLDE/CERN 13 Collaboration Spokesman: V. S. Amaral Contact person: J.G. Correia E. Alves 8, T. Agne 13, J.S. Amaral 1, V.S. Amaral 1, J.P. Araújo 7, J. M. D. Coey 2, N. A. Babushkina 5, J.G. Correia 8,13, H.-U. Habermeier 9, A. L. Lopes 1, A.A.Lourenço 1, J.G. Marques 4,8, T. M. Mendonça 7, M. S. Reis 1, E. Rita 8, J.C. Soares 4, J.B. Sousa 7, R. Suryanarayanan 6, P.B. Tavares 12, Y. Tokura 10,11, Y. Tomioka 11, A. Vantomme 3, J.M. Vieira 1 and U. Wahl 8.

OUTLINE Manganites and intrinsic complexity Charge-ordering scenarios, phase separation Multiferroic systems Local Probe Studies Hyperfine technique: Perturbed Angular Correlations Probing electric fields in Pr 1-x Ca x MnO 3 system Phase separation, polaron dynamics in LaMnO 3+  and La 1-x Ca x MnO 3 Multiferroics: RMnO 3 Other oxide systems Perspectives

x = 0.25 (NO ≠ Temperature ≠ Ca (x) RT EXPERIMENTAL RESULTS Pr 1-x Ca x MnO 3 PAC Anisotropy Functions Local Probe Studies / Pr 1-x Ca x MnO 3 system

@ 896K V zz increases with decreasing T due to atomic vibrations (rms displacements) High temperature linear slope ~ -1.5(1)  K -1 Temperature dependence for samples outside CO region EFG principal component V zz Local Probe Studies / Pr 1-x Ca x MnO 3 system

Samples within CO region Anomalous V zz (T) dependence approaching CO transition Charge order driven by the softening of a vibration mode? Softening of vibration modes? Same high temperature linear slope ~ -1.5(2)  K -1 Local Probe Studies / Pr 1-x Ca x MnO 3 system

T CO CO region, V zz vs Temperature T*T* Local Probe Studies / Pr 1-x Ca x MnO 3 system Sharp increase of V T< T CO T* (85 to 67 V zz /Å -2 in 2K)

T CO CO region, V zz vs Temperature T*T*T CO T*T* T*T* Local Probe Studies / Pr 1-x Ca x MnO 3 system Sharp increase of V T< T CO T*

EFG and magnetic susceptibility Local Probe Studies / Pr 1-x Ca x MnO 3 system

From NMR and PAC studies in Ferroelectrics Susceptibility Increase Local Spontaneous Polarization TCTC EFG sensitive to atomic vibrations and critical fluctuations Local Probe Studies / Pr 1-x Ca x MnO 3 system

Landau Theory: first order phase transitions T0T0 TcTc T<T c T>T c To model V zz (T) Local Probe Studies / Pr 1-x Ca x MnO 3 system

compatible with first-order dielectric phase transition below T co Results Electric susceptibility / spontaneous polarization below T C x=0.35 ->T EDO =206 K, x=0.4 ->T EDO =218 K, x=0.85 -> T EDO =112 K Local Probe Studies / Pr 1-x Ca x MnO 3 system A.M.L. Lopes et al., Phys. Rev. Lett. 100, (2008)

Piezoresponse Force Microscopy-hysteresis loop at room temperature: The piezoelectric contrast points to the existence of a local polar state Piezoelectric Force Microscopy in Pr 1-x Ca x MnO 3 system A. L. Kholkin, I.K. Bdikin, CICECO; Univ. Aveiro Local Ferroelectric response in Pr 0.6 Ca 0.4 MnO 3 single crystal

OUTLINE Manganites and intrinsic complexity Charge-ordering scenarios, phase separation Multiferroic systems Local Probe Studies Hyperfine technique: Perturbed Angular Correlations Probing electric fields in Pr 1-x Ca x MnO 3 system Phase separation, polaron dynamics in LaMnO 3+  and La 1-x Ca x MnO 3 Multiferroics: RMnO 3 Other oxide systems Perspectives

LaMnO 3+  Orthorhombic (O’) Strong JT distortion Antiferromagnetic Rhombohedric (R) No collective JT distortion Ferromagnetic  Mn 3+ / Mn 4+ MIX-VALENCE Only Mn 3+  collective JT distortion Doping Mn  / Mn 4+ 2  MIX-VALENCE (La 3/(3+  ) Mn 3/(3+  ) O 3 )

PAC anisotropy RT  and V zz as a function of  Orthorrombic  Rhombohedric LaMnO 3+    

LaMnO 3.12 Polarons ? Polaron nature and evolution? Polarons responsible for FM INSULATOR state? Ferromagnetic Insulator T<T C Rhombohedric  Orthorhombic phase transition ~ RT Phase coexistence in a broad range of T

PAC anisotropy ≠ T Orth Rho Orth+Rho 318 K 197 K Rho crystallographic phase (x-ray) Orth crystallographic Phase (x-ray) MHF for T<T C (T C =145 K) Coexistence of two local environments for all T Macroscopic Rho + Orth phase coexistence (x-ray)

% of u and d local environments RhoOrt % Ort High T  X-rays do not see distorted phase Random distributed polaron clusters Strong JT distortions in the Rho. Phase Polarons clusters start to T*>776 K R+O x-ray Smooth variation f u (and f d ) Percolation threshold Percolation of the local environments 31% Below percolation threshold distortions accommodate in a weakly JT distorted phase  and V zz vs T

Attenuation parameters for u and d env. e e T< T C u and d phase FM  dominant phase has an ultra slow dynamics imposing an insulator behavior in the system E a =0.31 eV Arrhenius plot of d E a ~ Polaron binding energy Thermal activated polaron hopping Polaron residence time   rd ~0.5  s Ultra slow polaron dynamics Small mobility of charge carriers

Lightly doped La-Ca manganite The same physics? R to O* transitions on cooling Intermediate JT- orbital ordering transition to O structure J. B. Goodenough, 2003

La 0.95 Ca 0.05 MnO 3 T>900K One fraction; low  T<900K Two fractions: high/low Vzz Change ratio at T~750K Only minoritary fraction sensitive to JT transition T=900K R to O* transition

La 0.95 Ca 0.05 MnO 3 PAC very sensitive to charge distribution changes: Disproportionation?

OUTLINE Manganites and intrinsic complexity Charge-ordering scenarios, phase separation Multiferroic systems Local Probe Studies Hyperfine technique: Perturbed Angular Correlations Probing electric fields in Pr 1-x Ca x MnO 3 system Phase separation, polaron dynamics in LaMnO 3+  and La 1-x Ca x MnO 3 Multiferroics: RMnO 3 Other oxide systems Perspectives

RMnO 3 vs. R ionic radius Single phase RMnO 3 samples (excepting LuMnO 3 with traces of Lu 2 O 3 ) Lu 2 O 3

YMnO 3 vs. Temperature Paramagnetic Ferroelectric AFM FE Paraelectric Two EFG’s present in YMnO 3 samples EFG1 f 1 ~70% w0~120 Mrad/s EFG2 f 2 ~30% w0~180 Mrad/s Hexagonal structure

EuMnO 3 vs. Temperature Two EFG’s present in EuMnO 3 samples EFG1 f 1 ~35-40% w0~120 Mrad/s EFG2 f 2 ~60-65% w0~180 Mrad/s Inversion of the main EFG below 20K AFM Paramagnetic and Paraelectric Orthorhombic structure

OUTLINE Manganites and intrinsic complexity Charge-ordering scenarios, phase separation Multiferroic systems Local Probe Studies Hyperfine technique: Perturbed Angular Correlations Probing electric fields in Pr 1-x Ca x MnO 3 system Phase separation, polaron dynamics in LaMnO 3+  and La 1-x Ca x MnO 3 Multiferroics: RMnO 3 Other oxide systems Perspectives

AgCrO 2 ( 111 In probe): a new multiferroic 294.5K 48.6K 21.4K 19.2K

Ag 2 NiO 2 and analogous: Orbital physics vs Charge Order Like AgCrO Ag and 111 Cd/In probes for the 2 sites: more complete mapping of charge distributions Valence(charge) changes in Ag and Ni avoiding Jahn-Teller distortion

CONCLUSIONS - Combined with other techniques and theoretical modeling, PAC brings new insights on current cutting edge research on solid state physics: correlated electrons systems. -The availability of different probes at Isolde allows tackling different situations: chemical compatibility and environments.