IRIS OIWFS Concept Study D. Loop1, M. Fletcher1, V. Reshetov1, R

Slides:



Advertisements
Similar presentations
TMT.OPT.PRE DRF011 Thirty Meter Telescope Secondary and Tertiary Mirror Systems International Symposium on Photoelectronic Detection and Imaging.
Advertisements

National Research Council Canada Conseil national de recherches Canada Experimental Laboratory for Instrument Development in Astrophysics Jean-Pierre Véran.
Thomas Stalcup June 15, 2006 Laser Guidestar System Status.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
AO188/LGS status AO188 development group(Subaru Telescope, NAOJ) (JST)
Trade Study Report: Fixed vs. Variable LGS Asterism V. Velur Caltech Optical Observatories Pasadena, CA V. Velur Caltech Optical Observatories Pasadena,
LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control.
NGAO Instrumentation Overview September 2008 Updated Sean Adkins.
NIR LOWFS for Keck and TMT Roger Smith & David Hale.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
1 Laser Guide Star Wavefront Sensor Mini-Review 6/15/2015Richard Dekany 12/07/2009.
Object selection ideas for NGAO NGAO Meeting #6 Anna Moore April 26, 2007.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
PALM-3000 PALM-3000 Instrument Architecture Antonin Bouchez PALM-3000 Requirements Review November 12, 2007.
LO WFS Summit 6/19/2015Richard Dekany A Joint Meeting of the NGAO, IRIS, and K1 LO WFS Teams 12/15/2009.
California Association for Research in Astronomy W. M. Keck Observatory KPAO Keck Precision Adaptive Optics Keck Precision AO (KPAO) SSC Presentation January.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
NGAO NGS WFS design review Caltech Optical Observatories 31 st March 2010.
PALM-3000 PALM-3000 Software Requirements Review Thang Trinh PALM-3000 Requirements Review, Caltech Campus November 12, 2007.
LGS-AO Performance Characterization Plan AOWG meeting Dec. 5, 2003 A. Bouchez, D. Le Mignant, M. van Dam for the Keck AO team.
PSWG March Adaptive Optics Systems Engineering on GMT Peter McGregor.
Agenda (Fri., June 7) 8:00AO UI Demonstration 9:00Introductions to AO team 9:05AOWG Chair Selection 9:15Review Agenda (make changes?) 9:20Review Planned.
PALM-3000 Systems Engineering R. Dekany, A. Bouchez 9/22/10 Integration & Testing Review.
W. M. Keck Observatory’s Next Generation Adaptive Optics (NGAO) Facility Peter Wizinowich, Sean Adkins, Rich Dekany, Don Gavel, Claire Max for NGAO Team:
NGAO Instrumentation Preliminary Design Phase Planning September 2008 Sean Adkins.
NGAO NGS WFS design review Caltech Optical Observatories 1 st April NGAO WFS design, Caltech Optical Observatories.
Design Team Report: AO Operational Tools (aka Acquisition and Diagnostics) Christopher Neyman W. M. Keck Observatory (for the Operational tools team) Keck.
Telescope Errors for NGAO Christopher Neyman & Ralf Flicker W. M. Keck Observatory Keck NGAO Team Meeting #4 January 22, 2007 Hualalai Conference Room,
NGAO Controls Team Kickoff Meeting August 5, 2008 Erik Johansson.
TMT Instrumentation Canadian capabilities and interests David Loop, NRC-HIA June 26, 2010.
Optical Design for an Infrared Multi-Object Spectrometer R. Winsor, J.W. MacKenty, M. Stiavelli Space Telescope Science Institute M. Greenhouse, E. Mentzell,
TMT.AOS.PRE REL01 Ellerbroek, AO4ELT, Paris, June Brent Ellerbroek Thirty Meter Telescope Observatory Corporation Adaptive Optics for.
TMT.SEN.PRE REL01 Development and validation of vibration source requirements for TMT to ensure AO performance Hugh Thompson and Doug MacMartin.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
Developing Performance Estimates for High Precision Astrometry with TMT Matthias Schoeck, Tuan Do, Brent Ellerbroek, Gilles Luc, Glen Herriot, Leo Meyer,
MCAO Adaptive Optics Module Mechanical Design Eric James.
U NIVERSITY of C ALIFORNIA O BSERVATORIES LICK · KECK · TMT University of California Observatories Director: Michael Bolte (UCSC) Associate Director: Ian.
1 TMT.AOS.PRE DRF01 Design and Testing of GPU Server based RTC for TMT NFIRAOS Lianqi Wang AO4ELT3 Florence, Italy 5/31/2013 Thirty Meter Telescope.
1 Palomar Tomograph V. Velur 1, B. Platt 2, M. Britton 1, R. Dekany 1 1 Caltech Optical Observatories, California Institute of Technology 2 Interferometry.
DL – IFU (Prieto/Taylor) Slicer: –25mas sampling … 0.9mm slices ~f/250 (assuming no anamorphism) Detector = 2k array of 18um pixels –Slit subtends 1-pixel.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
FLAO system test plan in solar tower S. Esposito, G. Brusa, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
TMT.PMO.PRE REL011 Thirty Meter Telescope Background and Status.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Conference “Feeding the Giants: ELTs in the era of Surveys” -- Ischia 31/08/2011 Large field of view and ELTs: an impossible marriage? Paolo Ciliegi (INAF.
AO188/LGS Status and Schedule 1 Yutaka Hayano January 31, 2008.
Improved Tilt Sensing in an LGS-based Tomographic AO System Based on Instantaneous PSF Estimation Jean-Pierre Véran AO4ELT3, May 2013.
Evaluation of Astrometry Errors due to the Optical Surface Distortions in Adaptive Optics Systems and Science Instruments Brent Ellerbroek a, Glen Herriot.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Pre-focal wave front correction and field stabilization for the E-ELT
AO4ELT, Paris A Split LGS/NGS Atmospheric Tomography for MCAO and MOAO on ELTs Luc Gilles and Brent Ellerbroek Thirty Meter Telescope Observatory.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
Keck Precision Adaptive Optics Authors: Christopher Neyman 1, Richard Dekany 2, Mitchell Troy 3 and Peter Wizinowich 1. 1 W.M. Keck Observatory, 2 California.
Theme 2 AO for Extremely Large Telescopes Center for Adaptive Optics.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
June 21, 2016, Robert Karban Jet Propulsion Laboratory,
SSA Module Assembly ANNEX 0 - Assembly sequence
Design of the NFIRAOS PWFS module
Theme 2 AO for Extremely Large Telescopes
Hu Zhongwen , Chen Yi,et al. (NIAOT)
Theme 2 AO for Extremely Large Telescopes
Theme 2 AO for Extremely Large Telescopes
Presentation transcript:

IRIS OIWFS Concept Study D. Loop1, M. Fletcher1, V. Reshetov1, R IRIS OIWFS Concept Study D. Loop1, M. Fletcher1, V. Reshetov1, R. Wooff1, J. Dunn1, G. Herriot1 A. Moore2, R. Dekany2, A. Delacroix2, R. Smith2, D. Hale2, J. Larkin3, L. Simard4, D. Crampton4, B. Ellerbroek4, C. Boyer4, L. Wang4 1NRC-Herzberg Institute of Astrophysics 2California Institute of Technology 3University of California Los Angeles 4TMT Observatory Corporation AO4ELT 2009 Conference June 25, 2009 TMT.IAO.PRE.09.036.DRF01

Outline We report on the concept study of the On-Instrument low order natural guide star WaveFront Sensors (OIWFS) for the TMT IRIS science instrument, a collaborative effort by NRC-HIA, Caltech, UCLA, TMT AO team, and TMT Instrument team. This includes work on sky coverage modeling, patrol geometry, detector alternatives, acquisition, guiding, and dithering scenarios, probe optics & mechanics, control architecture, and interfaces with NFIRAOS, IRIS, and TMT observatory. TMT.IAO.PRE.09.036.DRF01

IRIS on TMT NFIRAOS  IRIS TMT.IAO.PRE.09.036.DRF01

Key OIWFS Requirements Instrument rotator & services wrap - alignment between NFIRAOS delivered beam and IRIS science instrument Critical to IRIS image quality 2 tip/tilt and 1 tip/tilt/focus wavefront sensors Fast guiding, focus and tilt anisoplanatism 2 mas positioning accuracy > 4.4 µm at focal plane OIWFS are the positional reference for astrometric performance High sky coverage - < 2 mas tip/tilt jitter at galactic pole Near infrared, 1.0 to 1.7 µm, sensing on ‘sharpened’ guide stars High acquisition probability = low acquisition time TMT.IAO.PRE.09.036.DRF01

Work Breakdown Structure MGT OIWFS Management D Loop, HIA, A Moore, CIT SYS OIWFS Systems Engineering R Dekany, CIT, D Loop, HIA ENC OIWFS Enclosure V Reshetov, HIA ENC.ROT Instrument Rotator, Cable Wrap ARM OIWFS Probe Arms D Loop, HIA ARM.MEC Probe Arm Mechanics ARM.OPT Probe Arm Optics M Fletcher, HIA CC OIWFS Component Controller B Wooff, J Dunn, HIA CAM OIWFS Cameras R Smith, CIT CAM.DET Camera Detectors CAM.MEC Camera Mechanics A Delacroix, CIT CAM.AC Detector Controllers D Hale, CIT INT OIWFS Integration & Test Equip. TMT.IAO.PRE.09.036.DRF01

Sky Coverage (Lianqi Wang, Brent Ellerbroek, 2008) 1 TTF + 2TT probes TMT.IAO.PRE.09.036.DRF01

Object Selection Mechanism Object Select Mechanisms considered Robot placed pickoff & pathlength mirrors (EAGLE concept) Tip/tilt mirror tiling of focal plane (Caltech TIPI concept) Theta-Phi, 2 rotation stages (Flamingos-2 OIWFS, etc) Theta-R, 1 rotation + 1 linear stages (IRMOS, KMOS, etc) Requirements for positioning accuracy, dithering, non- sidereal tracking Theta-R concept chosen for initial sky coverage analysis TT and TTF function change – versus - 2 probe planes TMT.IAO.PRE.09.036.DRF01

Patrol Geometry (Lianqi Wang, Brent Ellerbroek, 2008) 3 identical ‘theta-R’ probes at 120 degree spacing Each probe capable of TT or TTF (key for sky coverage) Only need to reach 50% across 2’ field TMT.IAO.PRE.09.036.DRF01

Theta-R Patrol Geometry The Information Herein is Subject to the Restrictions Contained on the Cover Page of this Document TMT.IAO.PRE.09.036.DRF01

Theta-R Probe Optics TTF TT Converter lens and fold mirror Field stop Collimator ‘Trombone’ mirrors Fold mirrors ADC Lenslet array Imager Detector Dewar ‘face’ TTF TT Converter lens brings NFIRAOS exit pupil closer so that collimator can form image further downstream in a more convenient location Detector TMT.IAO.PRE.09.036.DRF01

Theta-R Probe Mechanics TMT.IAO.PRE.09.036.DRF01

Macro Mechanics TMT.IAO.PRE.09.036.DRF01 The Information Herein is Subject to the Restrictions Contained on the Cover Page of this Document TMT.IAO.PRE.09.036.DRF01

Exploded View TMT.IAO.PRE.09.036.DRF01 The Information Herein is Subject to the Restrictions Contained on the Cover Page of this Document TMT.IAO.PRE.09.036.DRF01

OIWFS Probe Platform TMT.IAO.PRE.09.036.DRF01 OIWFS platform assembly (with pickoff arms integrated) G10 or titanium flexures Thermal insulation (bottom part) Dewar interface frame (aluminum) The Information Herein is Subject to the Restrictions Contained on the Cover Page of this Document TMT.IAO.PRE.09.036.DRF01

OIWFS Cameras TT pixel scale = lH/2D = 5.67 mas/pixel TTF pixel scale = lH/D = 11.34 mas/pixel Same detectors can be used for TT and TTF functions Analysis of tip/tilt jitter & image wander during acquisition shows worst case of ~250 mas at 4 sigma and 5.67 mas/pixel > minimum of ~180x180 pixels Acquisition probability > larger probe FoV > more pixels Hawaii HxRG 1024x1024 HgCdTe detector w/new MBE material testing underway – read noise, dynamics Speedster 128x128 HgCdTe detector testing soon HgCdTe e-APDs and InGaAs emerging technologies TMT.IAO.PRE.09.036.DRF01

Acquisition Probability (Corinne Boyer, Luc Simard, 2008) 1024x1024 pixels 5.8’ probe FoV 1’ Telescope pointing σθ (worse at 1st light) provide on-chip small dithering capability (2-3’) TMT.IAO.PRE.09.036.DRF01

Sky Coverage Update (Lianqi Wang, Brent Ellerbroek, Jean-Pierre Veran, 2009) NGS mode errors combined with LGS mode errors of 178 nm RMS Overall on-axis budget of 187 nm RMS met at 45% sky coverage Shortfall (in quadrature) of ~28 nm RMS at 50% System optimization still underway Detector performance “Fitting field” for LGS modes Optimal choice of NGS modes and reconstructor TMT.IAO.PRE.09.036.DRF01

Control Architecture NFIRAOS RTC Engineering GUI Time Service Position Logging & Status Service AO Sequencer TCS Command Service IRIS IS Shared Memory Environ- mental Service House- keeping Service Motion Control Service Engineering Data System TMT.IAO.PRE.09.036.DRF01

Acknowledgements The authors gratefully acknowledge the support of the TMT partner institutions They are the Association of Canadian Universities for Research in Astronomy (ACURA) the California Institute of Technology and the University of California This work was supported as well by the Gordon and Betty Moore Foundation the Canada Foundation for Innovation the Ontario Ministry of Research and Innovation the National Research Council of Canada the Natural Sciences and Engineering Research Council of Canada the British Columbia Knowledge Development Fund the Association of Universities for Research in Astronomy (AURA) and the U.S. National Science Foundation. TMT.IAO.PRE.09.036.DRF01