Berry phase driven Hall effects

Slides:



Advertisements
Similar presentations
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Advertisements

One-dimensional approach to frustrated magnets
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Quantum effects in a pyrochlore antiferromagnet: ACr2O4
Intrinsic Hall Effects of Electrons and Photons – Geometrical Phenomena in Linear Response Theory Masaru Onoda (CERC-AIST) The 21 st Century COE International.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Frustrated Magnetism, Quantum spin liquids and gauge theories
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Geometry and the intrinsic Anomalous Hall and Nernst effects
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
Berry Phase Phenomena Optical Hall effect and Ferroelectricity as quantum charge pumping Naoto Nagaosa CREST, Dept. Applied Physics, The University of.
Quantum Spin Hall Effect - A New State of Matter ? - Naoto Nagaosa Dept. Applied Phys. Univ. Tokyo Collaborators: M. Onoda (AIST), Y. Avishai (Ben-Grion)
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Topological properties and dynamics of magnetic skyrmions
Spin transport in spin-orbit coupled bands
Spin Liquid Phases ? Houches/06//2006.
Berry phase effects on Electrons
Crystal Lattice Vibrations: Phonons
Topological Insulators and Beyond
Quantum Phase Transitions and Exotic Phases in Metallic Helimagnets I.Ferromagnets and Helimagnets II.Phenomenology of MnSi III.Theory 1. Phase diagram.
Dissipationless quantum spin current at room temperature Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University.
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
Topological Aspects of the Spin Hall Effect Yong-Shi Wu Dept. of Physics, University of Utah Collaborators: Xiao-Liang Qi and Shou-Cheng Zhang (XXIII International.
Persistent spin current in mesoscopic spin ring Ming-Che Chang Dept of Physics Taiwan Normal Univ Jing-Nuo Wu (NCTU) Min-Fong Yang (Tunghai U.)
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Topology and solid state physics
Exotic Phases in Quantum Magnets MPA Fisher Outline: 2d Spin liquids: 2 Classes Topological Spin liquids Critical Spin liquids Doped Mott insulators: Conducting.
Berry Phase Effects on Electronic Properties
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Unitary engineering of two- and three-band Chern insulators
Mott phases, phase transitions, and the role of zero-energy states in graphene Igor Herbut (Simon Fraser University) Collaborators: Bitan Roy (SFU) Vladimir.
Topology induced emergent dynamic gauge theory in an extended Kane-Mele-Hubbard model Xi Luo January 5, 2015 arXiv:
Jung Hoon Han (SKKU, Korea)
Recontres du Vietnam August 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia.
Magnon Another Carrier of Thermal Conductivity
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
Topological Insulators
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Axion electrodynamics on the surface of topological insulators
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
K. Y. Bliokh, A. Niv, V. Kleiner, E. Hasman Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel Nonlinear.
July 2010, Nordita Assa Auerbach, Technion, Israel AA, Daniel P. Arovas and Sankalpa Ghosh, Phys. Rev. B74, 64511, (2006). G. Koren, Y. Mor, AA, and E.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Weyl metal: What’s new beyond Landau’s Fermi liquid theory?
Topological phases driven by skyrmions crystals
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Some open questions from this conference/workshop
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
Qian Niu 牛谦 University of Texas at Austin 北京大学
Quantum vortices and competing orders
Electronic polarization. Low frequency dynamic properties.
Gauge structure and effective dynamics in semiconductor energy bands
Lecture 1: Semiclassical wave-packet dynamics and the Boltzmann equation Dimi Culcer UNSW.
Quantum phases and critical points of correlated metals
Quantum effects in a pyrochlore antiferromagnet: ACr2O4
Persistent spin current
Chiral Spin States in the Pyrochlore Heisenberg Magnet
Presentation transcript:

Berry phase driven Hall effects June 22, 2011@Beijing Naoto Nagaosa Department of Applied Physics The University of Tokyo

Collaborators Theory H. Katsura, J. H. Han, J. Zang, J. H. Park, K. Nomura, M. Mostovoy, B.J.Yang Experiment X. Z. Yu, Y. Onose, N. Kanazawa, Y. Matsui, Y. Shiomi, Y. Tokura

Berry phase M.V.Berry, Proc. R.Soc. Lond. A392, 45(1984) Transitions between eigen-states are forbidden during the adiabatic change Projection to the sub-space of Hilbert space and constrained quantum system Connection of the wave-function in sub-space of Hilbert space Berry phase, gauge connection

Path integral and Aharonov-Bohm effect Amplitude from A to B Generalized space Berry Phase

Electrons with ”constraint” doubly degenerate positive energy states. Dirac electrons Bloch electrons Projection onto positive energy state Spin-orbit interaction as SU(2) gauge connection Projection onto each band Berry phase of Bloch wavefunction

Solid angle by spins acting as a gauge field |ci> |cj> gauge flux F Si Sj Sk conduction electron acquire a phase factor scalar spin chirality Fictitious flux (in a continuum limit)

Equation of motion Br Bk k-space r-space Luttinger, Blout, Niu e- e- Fermi surface e- e- Luttinger, Blout, Niu

Issues to be discussed Hall effects of uncharged particles -- photons and magnons r-space vs. k-space Berry phase

Can neutral particle show Hall effect ? Hall effect of photon M. Onoda et al, Phys. Rev. Lett. 93, 083901 (2004). K.Y. Bliokh and Y.P. Bliokh Phys. Rev. Lett. 96, 073903 (2006). F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008) O. Hosten, P. Kwiat, Science 319, 787 (2008). Thermal Hall effect by phonon:Tb3Ga5O12 Strohm, Rikken, & Wyder, PRL 95 (‘05). Thermal Hall angle: at 5K. Hall effect of magnons in insulating magnets ?  Yes ! [ H.Katsura-N.N.-P.A.Lee (PRL09)]

Thermal Hall effect in solids Metals Wiedemann-Franz law Righi-Leduc effect F.D.M. Haldane, PRL 93 (‘04). applicable to AHE also How about Mott insulators ? Spins can carry thermal Hall current ? cf.) Magnon spin Hall effect (S. Fujimoto, arXiv: 0811.2263) Thermal Hall effect by phonon:Tb3Ga5O12 Strohm, Rikken, & Wyder, PRL 95 (‘05). Thermal Hall angle: at 5K.

Coupling between spin chirality and magnetic field Hubbard model with complex hopping ( ) Second-order: Ring-exchange: Scalar spin chirality D. Sen & R. Chitra, PRB (‘95) O.I. Motrunich, PRB (‘06).

Spin Chirality due to Spin Wave Scalar chirality: Collinear spin structure: Geometric Cancellation Ferromagnet:         Antiferromagnet   120°structure Exact cancellation ∵ 1-magnon term also cancels

NO-GO Theorem applicable to many cases ! Lattice structure: square(□), triangular (△), kagome, … Magnetic structure: FM ( ), AFM ( ), 120°, spiral, … Anisotropy of hopping → non-uniform No-go theorem: FM order with an edge-sharing geometry → × Corner sharing geometry, e.g., Kagome !! classical AFM kagome q=0 g.s. ⇔χ FM g.s. ⇔χ AFM Kagome FM Kagome AFM q=0

Kubo formula for thermal Hall conductivity Berry curvature Bose distribution function c.f. Matsumoto- Murakami

Thermal Hall effect in Kagome ferromagnet Spin Wave Hamiltonian Magnon dispersion Around k=0 TKNN-like formula: T-linear & B-linear! Skew scattering ? Small in the scattering of low energy limit (s-wave).

Quantum spin liquid Candidate materials RVB(resonating valence bond)state, P. W. Anderson(‘87) quantum liquid of singlets Mean field theory of RVB state U(1) (internal) gauge-field Candidate materials (constraint: ) Spinon (charge=0, spin 1/2) (S. Frorens & A. Georges, PRB 70 (‘04)) : gauge field spin chirality κ-(BEDT-TTF)Cu2(CN)3, ZnCu3(OH)6Cl2, Na4Ir3O8(3d, strong SO), …

RVB theory under magnetic field Lee and Lee, O. I. Motrunich spin model(△): Scalar chirality Slave rotor rep.: Ring exchange term κ-(BEDT-TTF)Cu2(CN)3 Ioffe-Larkin, Nagaosa-Lee

Spinon v.s. Magnon coupled to (via ring exchange term) Lorentz force Deconfined spinon ( gauge dependent object) coupled to      (via ring exchange term) Lorentz force Magnon (gauge invariant object) coupled to intrinsic Hall effect Thermal Hall effect due to spinons spinon metal ・Fermi surface(gapless spinon picture)   spinon current conductivity: Wiedemann-Franz law Thermal Hall angle

Thermal conductivity in κ-(BEDT-TTF)Cu2(CN)3 M. Yamashita et al., Nature Phys. 5 (‘09) 0.02 W/Km ⇔ @0.3 K T-linear Spinon lifetime Spinon effective mass Thermal Hall angle @ B [T] M. Yamashita et al., Science 328 (‘10)

Target material -Lu2V2O7 Pyrochlore Lattice (111) Plane is Kagome Collinear ferromagnet insulator

Thermal Hall conductivity for Lu2V2O7 (=Tc)

Temperature dependence, anisotropy “spontaneous” component Emergent at Tc Almost isotropic

Discussion Origin of thermal Hall conductivity? Possibility of electronic origin can be ruled out by Wiedemann Franz law. kxxe<10-5 W/Km below 100K kxy decreases with H at low T. Opening of magnon gap kxy is observed only below TC. Coherent magnon transport is crucial for the kxy. External H kxy is almost proportional to M. irrelevant

Theory of magnon Hall effect based on DM interaction Katsura & Nagaosa i site 1 2 3 4 D12 D23 D31 Magnons acquire Berry phase owing to DM interaction. (isotropic) D/J=0.32 Cf. D/J=0.19 for CdCr2O4 c.f. Matsumoto -Murakami

Gauge field of spin textures in insulating magnets M.Mostovoy, K.Nomura and N.N. PRL2011 Spin dynamics in the intermediate virtual states of the exchange int. Coupling between gauge field e and E  Multi-orbital Mott insulator Finite even without inversion asymmetry or spin-orbit interaction

Equation of motion one flux quantum/(nm)2~4000T ! k-space r-space Bk Br r-space Fermi surface e- e- Bk induced AHE Br induced AHE Cf. normal HE “dissipationless” nature

Pyrochlore Nd2Mo2O7 Y. Taguchi, Y. Oohara, H. Yoshizawa, 50 100 150 0.5 1 1.5 Temperature (K) Resistivity (m Ω cm) M ( H = 0.5 T) ( μ B /Mo) 10 20 30 I 2 /2Nd Mo O 7 ) Nd (200) (111) T * TC T* R Mo Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagoasa, and Y. T., Science 2001

Skyrmion and spin Berry phase in real space Skyrmion configuration From Senthil et al. Solid angle acts as a fictitious magnetic field for carriers

Quantum Phase Transition in MnSi Pfleiderer, Rosch, Lonzarich et al DM magnet Spin fluctuation on a sphere in momentum space Non-Fermi liquid charge transport

Small angle neutron scattering for Skyrmion Xtal MnSi S. Mühlbauer et. al., Science 323 915 (2009) c.f. early theoretical prediction by A.N.Bogdanov et al.

Skyrmion Crystal Skyrmion Skyrmion crystal Superposition of three Helix without phase shift Skyrmion Skyrmion crystal 3-flod-Q S. Muhlbauer et al. Science 323, 915 (2009).

Monte Carlo simulation for 2D helimagnet J. H. Park, J. H. Han, S. Onoda and N.N. anisotropy

Lorentz TEM observation of Skyrmion crystal in (Fe,Co)Si

Experiment Theory X. Z. Yu, Y. Onose, N. Kanazawa2, J. H. Park, J. H. Han, Y. Matsui, N. N. Y. Tokura Nature (2010)

Coupled dynamics of conduction electrons and SkX J.D.Zang, J.H. Han, M.Mostovoy, and N.N. Effective EMF due to spin texture acting on conduction electrons Coupling term Lorentz force Boltzmann equation LLG equation

Skyrmion-induced AHE (MnSi) M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, PRL (2009). A. Neubauer et al, PRL 102 186602 (2009) Relation to the magnetic structure?? Finite but quite small 36

Fictitious magnetic flux ©Y. Tokura one flux quantum/(nm)2~4000T ! (double-excahnge model) l Dryx ∝ F (Sk density)  (cal.) [T] Dryx(topological) [nWcm] l(magnetic) [nm] FeGe 70 1 indiscernible 28 18 5 MnSi 200 1100 MnGe 3.0 Nd2Mo2O7 (reference) ~0.5 ~40000 6000

“Electromagnetic induction” Moving magnetic flux produces the transverse electric field Conduction electron number per site Spin quantum number c.f. Topological Hall effect

New dissipative mechanism for spin texture moving flux  electric field  induced current  dissipation mean free path size of Skyrmion a’ does not require spin-orbit int. and can be as large as ~0.1 But is determined by DM interaction.

Skyrmion Hall effect Transverse motion of the Skyrmion as a back-action to the “electromagnetic induction” Skyrmion charge determined by the direction of the external magnetic field “Hall angle”

Hall Effect of Light Photon also has “spin” Generalized equation of geometrical optics M.Onoda, S.Murakami, N.N. (PRL2004)

Giant X-ray shift in deformed crystal PRL2010 Sawada-Murakami-Nagaosa PRL06 Berry curvature in r-k space enhancement

Berry phase in r-k space D. Xiao et al., PRL (2009) (Real) Space dependent Berry curvature Semiclassical equation of motion

Inhomogeneity-induced polarization D. Xiao et al., PRL (2009) Inhomogeneity-induced topological charge polarization ! (Second Chern form) P r

Conclusions Berry phases in r- and k-spaces, and (r,k)-space Hall effects of uncharged particles photons and magnons 3. Hall effect and charge pumping in spin textures C