Nanosensors Hyunkyung Bae Byungmook Kim
Nanosensors Why is it needed? How to make? What to do?
Big Issues in Biology Google image
Properties of Nanosensors Google image 1. Magnetic Property2. Optical property
Magnetic properties FerromagnetismParamagnetism.FerrimagnetismAntiferromagnetism Ordered and same magnitude without external magnetic field Disordered without external magnetic field In the external magnetic field, the moments are ordered. Aligned oppositely with different magnitude Aligned oppositely with the same magnitudes
Superparamagnetism Superparamagnetism is a form of magnetism, which appears in small ferromagnetic or ferromagnetic nanoparticle. Neel relxation time < measurement time →average zero magnetic state = superparamagnetic state When an external magnetic field is applied to an assembly of superparamagnetic nanoparticles, their magnetic moments tend to align along the applied field, leading to a net magnetization. NS Nanoparticle
Optical properties IGOR L. MEDINTZ1*, H. TETSUO UYEDA2, ELLEN R. GOLDMAN1 AND HEDI MATTOUSSI, Quantum dot bioconjugates for imaging, labelling and sensing, Nature materials 2005 Alexa 488 FITC GFP Quantum dots Organic dye Qd is Much Much stable!
Fluorescence Resonance Energy Transfer
How can we make it?
Characterization Gold nanoparticle – Optical Dark field Quantum dots - TIRF
What can we do with it? 1.Cell/Protein Imaging 2.Cell/Protein Manipulation 3.Nano ruler
1. Cell/Protein Imaging 40mer lipid 63mer 82mer Lipid
2. Cell/Protein Manipulation Cell Channel
3. Nanoruler Alexander J. Mastroianni, David A. Sivak, Phillip L. Geissler, and A. Paul Alivisatos, Probing the Conformational Distributions of Subpersistence Length DNA, Biophysical Journal 2009.
3. Nanoruler Alexander J. Mastroianni, David A. Sivak, Phillip L. Geissler, and A. Paul Alivisatos, Probing the Conformational Distributions of Subpersistence Length DNA, Biophysical Journal Dark Field – Gold nanoparticles TIRF Microscopy – Quantum dots Q dot Magne tic+ Au Completely matching! Glass Strong magnet TIRF Microscopy Strong magnet
Future work
References A.P.Alivisatos, Science, New Series, Vol. 271, No (Feb. 16, 1996), pp Yadong Yin & A.Paul Alivisatos, NATURE04165, vol 437, 2005 J. M. Yuk, J.W. Park, A. Paul Alivisatos, High-resolution EM of Colloidal Nanocrystal growth using graphene liquid cells, Science 336, 61 (2012) Xiaogang Peng, L.Manna, W.Yang, J. Wickham, E.Scher, A.Kadavanich & A.P.Alivisatos, Shape control of CdSe nanocrystals, Nature,vol 404, 2 March 2000 L.Manna, D.J.Milliron, A.Meisel, E.C.Scher, A.Paul Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, nature materials, vol 2,June 2003 Haitao Liu and A.Paul Alivisatos, Preparation of Asymmetric Nanostructures through Site Modification of Tetrapods,Nano Lett., Vol. 4, No. 12, 2004 Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P., Cation exchange reactions-in ionic nanocrystals. Science 2004, 306, (5698), Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P., Spontaneous superlattice formation in nanorods through partial cation exchange. Science 2007, 317, (5836), IGOR L. MEDINTZ1*, H. TETSUO UYEDA2, ELLEN R. GOLDMAN1 AND HEDI MATTOUSSI, Quantum dot bioconjugates for imaging, labelling and sensing, Nature materials 2005 Alexander J. Mastroianni, David A. Sivak, Phillip L. Geissler, and A. Paul Alivisatos, Probing the Conformational Distributions of Subpersistence Length DNA, Biophysical Journal 2009