A Study of 4,4 ΄ -Dimethylaminobenzonitrile by Chirped-Pulsed Fourier Transform Microwave Spectroscopy Ryan G. Bird, Valerie J. Alstadt, and David W. Pratt.

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
Adam J. Fleisher David W. Pratt University of Pittsburgh Alessandro Cembran Jiali Gao University of Minnesota Charge redistribution in the β-naphthol-water.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Molecular Spectroscopy Symposium
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
NOVEL APPLICATIONS OF A SHAPE-SENSITIVE DETECTOR 3: MODELING COMBUSTION CHEMISTRY THROUGH AN ELECTRIC DISCHARGE SOURCE Giana Storck Purdue University Department.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
OSU 06/19/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Microwaves are not just for Cooking! Nicholas R. Walker University of Bristol by 1 30 th January,
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Kelly Hotopp June 22, 2010 Purdue University.  Demonstration of 2D CP-FTMW spectroscopy ◦ Non-Selective Excitation ◦ Selective Excitation  2D CP-FTMW.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
R. D. Suenram, Justin Lindsay Neill, Jason J. Pajski, Gordon G. Brown, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Adam J. Fleisher Justin W. Young David W. Pratt Department of Chemistry University of Pittsburgh Internal dynamics of water attached to a photoacidic substrate:
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Determination of Torsional Barriers of Itaconic Acid and N-acetylethanolamine using Chirped-pulsed FTMW Spectroscopy. Josiah R. Bailey, Timothy J. McMahon,
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Adam J. Fleisher Philip J. Morgan David W. Pratt Department of Chemistry University of Pittsburgh Non-symmetric push-pull molecules in the gas phase: High.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Nathan Seifert, Wolfgang Jäger University of Alberta
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Justin Young, Leonardo Alvarez-Valtierra and David W. Pratt.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Characterisation and Control of Cold Chiral Compounds
The CP-FTMW Spectrum of Bromoperfluoroacetone
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
Presentation transcript:

A Study of 4,4 ΄ -Dimethylaminobenzonitrile by Chirped-Pulsed Fourier Transform Microwave Spectroscopy Ryan G. Bird, Valerie J. Alstadt, and David W. Pratt University of Pittsburgh Justin L. Neill and Brooks H. Pate University of Virginia

Prelude to Charge Transfer DMABN is widely known model for excited state charge transfer Charge transfer facilitated by twisting amino nitrogen Determine electronic density around amino nitrogen using quadrupole coupling terms DMABN = 2 nitrogen nuclei – Simplified model; DMA = 1 nucleus E. Lippart, W. Lüder, and H. Boos, in the Proceedings of the 4th International Meeting on Advances in Molecular Spectroscopy (1959), A. Mangini, ed., Pergamon Press, Oxford, 1962, pgs

CP FTMW Spectrometer MW Synthesizer Arbitrary Waveform Generator Fourier Transform Free Induction Decay Chirped Pulse 240 MHz 500 MHz Digitizer (10 Gs/s)

Spectrum of N,N΄-Dimethylaniline avg ~500 MHz CP

Inversion of DMA 5 05 ← avg 10 MHz CP

Rotational Constants DMA This workLister 1 mp2/6-31+g(d) A(0 + ) (MHz) (103) B(0 + ) (MHz) (4) C(0 + ) (MHz) (3) A(0 - ) (MHz) (119) B(0 - ) (MHz) (5) C(0 - ) (MHz) (5) ΔI (amu Å 2 ) Lines95 1 Cervellati, R.; Borgo, A. D.; Lister, D. G. Journal of Molecular Structure 1982, 78,

Barrier to Inversion Aniline 1 N-methylaniline 1 N,N-dimethylaniline Inversion angle (φ)37~2022 V 2 barrier (cm -1 ) Cervellati, R.; Esposti, A. D.; Lister, D. G.; Palmieri, P. Journal of Molecular Structure: THEOCHEM 1985, 122, ΔE = cm -1 I is the integrated peak area g is the statistical weight F = ћ 2 /2I r I r is the reduced moment of inertia of the inversion motion

N,N΄-Dimethylaminobenzonitrile 2 – 8 GHz 190,000 avg 9 GHz CP 6 – 18 GHz 10,000 avg ~500 MHz CP

DMABN Constants This workEndo 1 LIF 2 M052x A (MHz)3469.2(9) B (MHz) (2) C (MHz) (2) ΔI (amu Å 2 ) Lines293 1 Kajimoto, O.; Yokoyama, H.; Ooshima, Y.; Endo, Y. Chemical Physics Letters 1991, 179, Nikolaev, A. E.; Myszkiewicz, G.; Berden, G.; Meerts, W. L.; Pfanstiel, J. F.; Pratt, D. W. Journal of Chemical Physics 2005, 122, 1-10.

Quadrupole Splitting in DMABN 2 – 8 GHz6 – 18 GHz 3 13 ← ←8 08

Amine Quadrupole Coupling CompoundAniline 1 DMADMABN Amine N χ aa (MHz)2.34(6)2.58(3)2.54(33) χ bb (MHz)1.86(6)2.80(6)2.80(13) χ cc (MHz)-4.20(6)-5.39(6)-5.33(13) Inversion Angle (deg) Hatta, A.; Suzuki, M.; Kozima, K. Bull. Chem. Soc. Jap. 1973, 46, Lone pair density Inversion angle

Hyperconjugation H H H N - + C C π-π donation N - +

Nitrile Quadrupole Coupling DMABNBenzonitrile 1 Ethyl Cyanide 2 Nitrile N χ aa (MHz)-4.11(30) (36)-3.309(33) χ bb (MHz)2.40(13)2.2886(11)1.265(13) χ cc (MHz)1.71(13)1.9488(11)2.044(20) 1 Wohlfart, K.; Schnell, M.; Grabow, J. U.; Küpper, J. Journal of Molecular Spectroscopy 2008, 247, Li, Y. S.; Harmony, M. D. The Journal of Chemical Physics 1969, 50, C N π-π donation

Townes and Dailey Populations 1 Aniline 2 DMADMABN χ zz (MHz) χ xx (MHz) χ yy (MHz) NzNz NxNx NyNy X Y 1 Townes, C. H.; Dailey, B. P. The Journal of Chemical Physics 1949, 17, Lister, D. G.; Tyler, J. K.; Høg, J. H.; Larsen, N. W. Journal of Molecular Structure 1974, 23,

Aniline → DMA → DMABN Decrease in inversion angle and increase in amine χ cc coupling term Caused by increase in electronic density around amine nitrogen Electronic density stabilized through hyperconjugation Increased density facilitates charge transfer Quadrupole terms of excited state??

Acknowledgements Pratt Group:Pate Group: Dr. David PrattDr. Brooks Pate Justin Young Justin Neill A.J. FleisherMatt Muckle Phil MorganDaniel Zaleski Jessica Thomas Casey Clements

Quadrupole Coupling CompoundAniline 1 DMADMABNBenzonitrile 2 Ethyl Cyanide 3 Amine N χ aa (MHz)2.34(6)2.58(3)2.54(33) χ bb (MHz)1.86(6)2.80(6)2.80(13) χ cc (MHz)-4.20(6)-5.39(6)-5.33(13) Nitrile N χ aa (MHz)-4.11(30) (36)-3.309(33) χ bb (MHz)2.40(13)2.2886(11)1.265(13) χ cc (MHz)1.71(13)1.9488(11)2.044(20) 1 Hatta, A.; Suzuki, M.; Kozima, K. Bull. Chem. Soc. Jap. 1973, 46, Wohlfart, K.; Schnell, M.; Grabow, J. U.; Küpper, J. Journal of Molecular Spectroscopy 2008, 247, Li, Y. S.; Harmony, M. D. The Journal of Chemical Physics 1969, 50,

119° 6° Structures DMABN DMA 113° 22°