การสื่อสารข้อมูลและเครือข่าย คอมพิวเตอร์ Data Communication and Networks บทที่ 2 พื้นฐานข้อมูลและ สัญญาณ อาจารย์ผู้สอน : ดร. วีรพันธุ์ ศิริฤทธิ์ E-Mail.

Slides:



Advertisements
Similar presentations
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Advertisements

Lecture 26 Physical Layer Ch 4: Digital Transmission
Chapter 4 Digital Transmission
1 Computer Communication & Networks Lecture 6 Physical Layer: Digital Transmission Waleed Ejaz
การสื่อสารข้อมูลและเครือข่าย คอมพิวเตอร์ Data Communication and Networks บทที่ 2 พื้นฐานข้อมูลและ สัญญาณ อาจารย์ผู้สอน : ดร. วีรพันธุ์ ศิริฤทธิ์ .
ICSA 341 (Updated 12/2001) Encoding There are four types of encoding possible. –Digital Encoding of Digital Data –Digital Encoding of Analog Data –Analog.
EE 4272Spring, 2003 Chapter 5 Data Encoding Data Transmission Digital data, digital signal Analog data, digital signal: e.g., voice, and video are often.
Chapter 4 Digital Transmission
Computer Networks1 Chapter 4 Digital Transmission.
6/10/2015 Unit-1 : Data Communications 1 CS 1302 Computer Networks — Unit - 1 — — Data Communications — Text Book Behrouz.A. Forouzan, “Data communication.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 4 Digital Transmission.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Chapter 4 Digital Transmission Stephen Kim 4.1.
Data Communication Networks Lec 8 and 9. Physical Layer and Media Bottom-most layer. Interacts with transmission media. Physical part of the network.
CIT 307 Online Data Communications Digital Transmission Module 5 Kevin Siminski, Instructor.
Base-Band Digital Data Transmission Prepared By: Amit Degada. Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology,
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2001 Data Transmission Techniques Data to be transmitted is of two types 1.Analog data 2.Digital data Therefore,
Chapter 4 Digital Transmission
Data Communications Chapter 5 Data Encoding.
Chapter 4 Digital Transmission.
Computer Communication & Networks Lecture # 05 Physical Layer: Signals & Digital Transmission Nadeem Majeed Choudhary
1 Kyung Hee University Digital Transmission. 2 Kyung Hee University 4 장 Digital Transmission 4.1 Line Coding 4.2 Block Coding 4.3 Sampling 4.4 Transmission.
BZUPAGES.COM 4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 Digital Transmission.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 4 Digital Transmission.
: Data Communication and Computer Networks
British Computer Society (BCS)
Chapter 4 Digital Transmission.
DIGITAL-TO-DIGITAL CONVERSION In this section, we see how we can represent digital data by using digital signals. The conversion involves three.
Kashif BashirWWW.Taleem.greatnow.com Chapter 4 Digital Transmission.
9/12/ Digital Transmisison - Lin 1 CPET/ECET Digital Transmission Data Communications and Networking Fall 2004 Professor Paul I-Hai Lin Electrical.
A digital signal is a sequence of discrete discontinuous voltage pulses. Each pulse is a signal element (symbol). Binary data are transmitted by encoding.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
COMMUNICATION SYSTEM EEEB453 Chapter 5 (Part V) DIGITAL TRANSMISSION-LINE ENCODING Intan Shafinaz Mustafa Dept of Electrical Engineering Universiti Tenaga.
Digital Transmission & Analog Transmission. 4.#2 1. DIGITAL-TO-DIGITAL CONVERSION Digital Data -> Digital Signal Three techniques: 1.line coding (always.
Chapter 4 Digital Transmission.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Spring 2007Data Communications, Kwangwoon University4-1 Chapter 4. Digital Transmission 1.Digital-to-Digital Conversion 2.Analog-to-Digital Conversion.
4.1 Digital Transmission. DIGITAL-TO-DIGITAL CONVERSION In this section, we see how we can represent digital data by using digital signals. The conversion.
DATA ENCODING Digital-to-digital conversion - Encode digital data into a digital signal - Sending computer data Analog-to-Digital conversion - Digitizing.
Unit 1 Lecture 6 1. Different Conversion/Transmission Schemes 2 Before we discuss various line coding schemes, let us first have an idea of different.
Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 Digital Transmission
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Excerpts from Slides of Chapter 4 Forouzan Digital Transmission.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 4 Digital Transmission.
Chapter 4 Digital Transmission. 4.2 Summary Line Coding Line Coding Schemes Block Coding Scrambling Signal Element versus data element Multilevel : 2b1Q.
1 Chapter 5 Encoding. 2 Figure 4-1 Transformation of Information to Signals.
4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 CSCD 433 Network Programming Fall 2013 Lecture 5a Digital Line Coding and other...
Signal Encoding Techniques. Digital Data, Digital Signal  Digital signal discrete, discontinuous voltage pulses discrete, discontinuous voltage pulses.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Physical Layer Summary Data-to-Signal Digital-to-Analog (Modem) Analog-to-Analog (Modem) Digital-to-Digital.
Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 CSCD 433 Network Programming Fall 2016 Lecture 4 Digital Line Coding and other...
Chapter 4. Digital Transmission
Introduction to Information Technologies
DATA COMMUNICATION Lecture-16.
Chapter 4 Digital Transmission.
Chapter 4 Digital Transmission
Chapter 4 Digital Transmission.
4. TRANSMISI DIGITAL.
Introduction to Information Technologies
Chapter 4 Digital Transmission
Encoding.
Analog to Digital Encoding
Disadvantages of Analog Transmission
Chapter 5: Encoding Information must be encoded into signals before it can be transported across communication media Information can be either Digital,
CS433 - Data Communication and Computer Networks
Chapter 4 Digital Transmission
Presentation transcript:

การสื่อสารข้อมูลและเครือข่าย คอมพิวเตอร์ Data Communication and Networks บทที่ 2 พื้นฐานข้อมูลและ สัญญาณ อาจารย์ผู้สอน : ดร. วีรพันธุ์ ศิริฤทธิ์ gmail.com

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Digital Transmission

McGraw-Hill©The McGraw-Hill Companies, Inc., Line Coding Some Characteristics Line Coding Schemes Some Other Schemes

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.1 Line coding

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.2 Signal level versus data level

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.3 DC component

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Example 1 A signal has two data levels with a pulse duration of 1 ms. We calculate the pulse rate and bit rate as follows: Pulse Rate = 1/ = 1000 pulses/s Bit Rate = Pulse Rate x log 2 L = 1000 x log 2 2 = 1000 bps

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Example 2 A signal has four data levels with a pulse duration of 1 ms. We calculate the pulse rate and bit rate as follows: Pulse Rate = = 1000 pulses/s Bit Rate = PulseRate x log 2 L = 1000 x log 2 4 = 2000 bps

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.4 Lack of synchronization

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Example 3 In a digital transmission, the receiver clock is 0.1 percent faster than the sender clock. How many extra bits per second does the receiver receive if the data rate is 1 Kbps? How many if the data rate is 1 Mbps? Solution At 1 Kbps: 1000 bits sent  1001 bits received  1 extra bps At 1 Mbps: 1,000,000 bits sent  1,001,000 bits received  1000 extra bps

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.5 Line coding schemes

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Unipolar encoding uses only one voltage level. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.6 Unipolar encoding

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Polar encoding uses two voltage levels (positive and negative). Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.7 Types of polar encoding

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 In NRZ-L the level of the signal is dependent upon the state of the bit. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 In NRZ-I the signal is inverted if a 1 is encountered. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.8 NRZ-L and NRZ-I encoding

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.9 RZ encoding

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 A good encoded digital signal must contain a provision for synchronization. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.10 Manchester encoding

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 In Manchester encoding, the transition at the middle of the bit is used for both synchronization and bit representation. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.11 Differential Manchester encoding

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 In differential Manchester encoding, the transition at the middle of the bit is used only for synchronization. The bit representation is defined by the inversion or noninversion at the beginning of the bit. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 In bipolar encoding, we use three levels: positive, zero, and negative. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.12 Bipolar AMI encoding

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure B1Q

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.14 MLT-3 signal

McGraw-Hill©The McGraw-Hill Companies, Inc., Sampling Pulse Amplitude Modulation Pulse Code Modulation Sampling Rate: Nyquist Theorem How Many Bits per Sample? Bit Rate

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.18 PAM

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Pulse amplitude modulation has some applications, but it is not used by itself in data communication. However, it is the first step in another very popular conversion method called pulse code modulation. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.19 Quantized PAM signal

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.20 Quantizing by using sign and magnitude

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.21 PCM

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.22 From analog signal to PCM digital code

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency. Note:

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Figure 3.23 Nyquist theorem

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Example 4 What sampling rate is needed for a signal with a bandwidth of 10,000 Hz (1000 to 11,000 Hz)? Solution The sampling rate must be twice the highest frequency in the signal: Sampling rate = 2 x (11,000) = 22,000 samples/s

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Example 5 A signal is sampled. Each sample requires at least 12 levels of precision (+0 to +5 and -0 to -5). How many bits should be sent for each sample? Solution We need 4 bits; 1 bit for the sign and 3 bits for the value. A 3-bit value can represent 2 3 = 8 levels (000 to 111), which is more than what we need. A 2-bit value is not enough since 2 2 = 4. A 4-bit value is too much because 2 4 = 16.

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Example 6 We want to digitize the human voice. What is the bit rate, assuming 8 bits per sample? Solution The human voice normally contains frequencies from 0 to 4000 Hz. Sampling rate = 4000 x 2 = 8000 samples/s Bit rate = sampling rate x number of bits per sample = 8000 x 8 = 64,000 bps = 64 Kbps

McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Note that we can always change a band-pass signal to a low-pass signal before sampling. In this case, the sampling rate is twice the bandwidth. Note: