The Gait Cycle:.

Slides:



Advertisements
Similar presentations
KINETIC ANALYSIS OF GAIT INITIATION D. Gordon E. Robertson, PhD, FCSB 1 Richard Smith, PhD 2 Nick ODwyer, PhD 2 1 Biomechanics Laboratory, School of Human.
Advertisements

The Ankle and Foot Joints
1 International Committee of the Red Cross Polypropylene Technology Manufacture of Lower Limb Prostheses in PP TF STATIC ALIGNMENT.
Prepared by: MUHAMMAD IBRAHIM KHAN BS.PT(Pak), MS.PT(Pak), NCC(AKUH)
Biomechanical Examination Parameters
UNDERSTANDING NORMAL & PATHOLOGICAL GAIT
ASSESSMENT CHAPTER 6. Physical assessment PHYSIOTHERAPY ASSESSMENT session CHAPTER 6 PART
Normal Gait.
Anatomical Society is a registered Charity No: and Limited Company Registered in England and Wales No: | Registered.
Pathological Gait. Excessive Plantarflexion Causes Triceps surae contracture Triceps surae spasticity Pre-tibial weakness Voluntary/compensatory 2 0 weak.
Ambulation and Ambulation Aids
Phases of the Gait Cycle And Determinants of Gait
ESS 303 – Biomechanics Ankle and Foot. Tibiofibular Joint Similar to radioulnar joint Superior tibiofibular joint Middle tibiofibular joint (interosseus.
Human Locomotion Focus on Walking Taylor Murphy HSS 537.
CHAPTER 18:PART 1 LOCOMOTION: SOLID SURFACE
Walking Analysis … the process A gait cycle consists of “the activities that occur from the point of initial contact of one lower extremity to the point.
Stair Gait Lecture Notes.
Kinesiology Laboratory 8
GAIT Margo Prim Haynes, PT, DPT, MA, PCS Mary Rose Franjoine, PT, DPT, MS, PCS 2009.
Gait.
Thornbers Podiatry “Promoting optimum health and performance”
Mitchell L. Goldflies, M.D.. Overview  Introduction  Stance  Swing  Normal and Abnormal Gait.
Gait Cycle.
Foot and Ankle Andrea, Colten, Jessica, Tyne. Surface Anatomy.
Biomechanics- Gait.
By Jeff C. Conforti, DPT.  To understand the basic elements of posture and gait  To learn the phases of gait  To learn the key muscles and their function.
Progression: The basic objective of the locomotor system is to move the body forward from the current site to a new location so the hands and head can.
Biology 323 Human Anatomy for Biology Majors Lecture 9 Dr. Stuart S. Sumida Pelvis and Perineum Human Walking.
Segmental Power Analysis of Walking
KINETIC ANALYSIS OF GAIT INITIATION D. Gordon E. Robertson, PhD, FCSB 1 Richard Smith, PhD 2 Nick O’Dwyer, PhD 2 1 Biomechanics Laboratory, School of Human.
Gait Analysis Study of human locomotion Walking and running
Analysis of a continuous skill – walking and running (gait)
+ Gastrocnemius Soleus Gracilis Achilles Tendon By Lili Ross Period 5 gym.
Biomechanics of Gait Walking
Determinants of Gait Determinants of Gait.
Muscles of the Human Body!
1 Gait Analysis – Objectives To learn and understand: –The general descriptive and temporal elements of the normal walking movement –The important features.
Gait Analysis – Objectives
Gait Analysis – Objectives
KINS 151 Website
Biomechanics foot ankle: Gait Stance Phase Gait60% of cycle –Initial contact –Loading response –Midstance –Terminal Stance –Preswing Swing.
Normal and Pathological Gait in the Elderly Peggy R. Trueblood, PhD, PT California State University, Fresno.
Analysis of Movements Revision Lesson
Gait development in children. The prerequisite for Gait development Adequate motor control. C.N.S. maturation. Adequate R.O.M. Muscle strength. Appropriate.
$100 $200 $300 $400 $500 $100$100$100 $200 $300 $400 $500 SHOULDER and ARM FINAL ROUND $100 $200 $300 $400 $500 ELBOW and FOREARM HIPS and THIGH KNEE and.
Chapter 9 Evaluation of Gait. Introduction Gait Analysis – functional evaluation of a person’s walking or running style Systematic method of identifying.
Science Project Running and Running Shoes Micah Hinson.
Chapter 19: Locomotion: Solid Surface
ANKLE JOINT Bony arrangement = stability
Gait Analysis – Objectives
 Support Events  Foot (Heel) Strike  Foot Flat  Midstance  Heel Off  Foot (Toe) Off  Swing Events  Pre swing  Midswing  Terminal swing.
Gait.
Gait (3) Sagittal Plane Analysis Lecture Notes. Example To Make Things Clear  If during gait knee flexion is necessary, & a flexion moment is acting.
1 Gait Analysis – Objectives To learn and understand: –The general descriptive and temporal elements of the normal walking movement –The important features.
2) Knee.
Articulations of the Hip, Knee, and Ankle
Figure Figure Figure Figure
Upon completion of this lecture student will be able to:  Identify different parts of transfemoral prosthesis.  Differentiate between Quadrilateral.
Running Gait.
Pelvis and Perineum Human Walking Biology 223
SCOLIOTIC CURVE CAN YOU NAME SOME MUSCLES THAT ARE OVERSTRETCHED?
Bare weight Provide a means for locomotion Maintain equilibrium
Analysis of Movements Revision Lesson
IC = Initial Contact LR = Loading Response MSt = Mid Stance
AN INTRODUCTION TO THE GAIT CYCLE Shayne Trinder DPodM, MChs, FCPodS
Human Gait.
Normal Gait.
Panagiotis Koutakis, BS, Jason M. Johanning, MD, Gleb R
Internal forces during gait
Presentation transcript:

The Gait Cycle:

Walking – The Stance Phase

Components of the Stance Phase Stance phase comprises 60% of the gait cycle Heel strike – moment when the heel first strikes the ground Foot flat – from heel strike to when the full foot is in contact with the ground Midstance – body weight is directly over the stance leg Heel off – moment the heel of the stance leg leaves the ground Toe off – when only the toe of the stance leg is in contact with the ground

Walking – The Swing Phase

Components of the Swing Phase Swing phase comprises 40% of the gait cycle Acceleration – the toe of the stance leg leaves the ground and begins to swing forward Midswing – the swinging leg is directly beneath the body Deceleration – the swinging leg continues forward towards knee extension but is slowing down as it travels, stopping just prior to full knee extension and heel contact with the ground

Range of motion at the joints Trunk - As left leg moves forward, pelvis rotates clockwise as viewed from above 7 deg Hip Joint (30 deg flex at HS strike, 180 deg at TO) Stance - extension, adduction, internal rotation Swing - flexion/extension, abduction, ext rotation Knee joint - 180 deg at HS, 160 deg at mid-stance Ankle joint - Neutral at HS, hinges down during support, and plantar flexes at TO . ROM 30 deg COM displacement +5 cm bilaterally and vertically (Fig 15.3)

Running Analysis…... Running is similar to walking BUT, it differs significantly in a number of ways, for example: No period of “double support” Float periods (both feet airborne) Requires greater balance Requires greater strength Requires greater ROM at hip, knee, and ankle joints Involves greater excursion of center of mass Involves greater ground reaction forces

Running – A Gait Cycle

Muscle Activity in Running... Glut. Max. & med. -- active at the beginning of the stance phase (concentrically) and again at the end of the swing phase (eccentrically). Iliopsoas -- active during a portion of the swing phase (concentrically). Quadriceps -- 1st 10% of the stance phase (eccentrically) and last 20% of the swing phase (concentrically). Hamstrings -- initial portion of the swing phase (concentric) and at the end of the swing phase (eccentric). Plantar flexors (gastrocnemius & soleus) – Mid and latter part of stance phase