HW # 32- Videos for section 3-4 AND p. 132 # 1-11 all Homework help online go.hrw.com keyword: MT8CA 3-4 Warm up a)5n + 3n – n + 5 = 26 b)-81 = 7k + 19.

Slides:



Advertisements
Similar presentations
Extension of AF4.1 Solve two-step linear equations and inequalities in one variable over the rational numbers, interpret the solution or solutions.
Advertisements

Some problems produce equations that have variables on both sides of the equal sign.
Preview Warm Up California Standards Lesson Presentation.
Solving Two-Step Equations
Additional Example 1: Solving Equations That Contain Like Terms
Warm Up Solve each equation. 1. 2x – 5 = –17 2. –6 14
Warm Up Simplify. 1. 4x – 10x 2. –7(x – 3) 3. –6x – (x – 2)
Learn to solve multi-step equations.
Warm Up Solve. 1. 2x + 9x – 3x + 8 = – 4 = 6x + 22 – 4x 3. + = 5 4. – = 3 x = 1 x = -13 x = 34 Course Solving Equations with Variables on.
Solving Equations with Variables on Both Sides
Solving Equations with Variables on Both Sides
Multi-Step Inequalities
9.1 – Solving Equations.
Section 1Chapter 2. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Linear Equations in One Variable Distinguish between expressions.
Chapter 2 Section 1 Copyright © 2011 Pearson Education, Inc.
HW # 76 - p. 142 & 143 # 1-40 even SHOW YOUR WORK! Warm up Week 23, Day One Compare. Use –3 – – –8 –7 Solve y = 166. m.
Solve Equations With Variables on Both Sides
Solving Two-Step Equations You will solve equations by undoing operations using properties of equality. Essential Question: How do you solve two-step equations?
Daily Homework Quiz Simplify the expression. 1. ()() 7+t6 – 4 – t b+20a – 8b8b – 15a ANSWER 72 ANSWER 6b6b+5a5a– 3t3t78 – 3.Evaluate when 2x2x ()2)2.
LO: I will interpret equations with variables on both sides using simplifying, collecting of the variable terms on one side, & finally- isolating the variable.
More Equations Solving Multistep Equations. Some equations may have more than two steps to complete. You may have to simplify the equation first by combining.
Evaluating Algebraic Expressions 3-3Solving Multi-Step Equations What are the steps for solving multi-step equations? What are the steps for solving multi-step.
Section 2.2 More about Solving Equations. Objectives Use more than one property of equality to solve equations. Simplify expressions to solve equations.
To solve an equation with variables on both sides, use inverse operations to "collect" variable terms on one side of the equation. Helpful Hint Equations.
Math 021.  An equation is defined as two algebraic expressions separated by an = sign.  The solution to an equation is a number that when substituted.
1.4 Solving Linear Equations. Blitzer, Algebra for College Students, 6e – Slide #2 Section 1.4 Linear Equations Definition of a Linear Equation A linear.
Sec. 1-4 Day 2 HW pg (42-46, 53, 62-63, 67, 71-72)
Systems of Equations 7-4 Learn to solve systems of equations.
Preview Warm Up California Standards Lesson Presentation.
Combine Like terms Simplify 3x+2x= 3x+2y+2x+7y= 3x+5x-2= 14x+y-2x+4y-7= Slide 1- 2.
Multi-Step Inequalities
1.3 Solving Linear Equations
Chapter 2 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 2-1 Solving Linear.
Evaluating Algebraic Expressions 3-3Solving Multi-Step Equations Extension of AF4.1 Solve two-step linear equations in one variable over the rational numbers.
2-4 Solving Equations with Variables on Both Sides Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation.
Warm Up Solve. 1. 2x + 9x – 3x + 8 = –4 = 6x + 22 – 4x x = 1
Multi-Step Equations We must simplify each expression on the equal sign to look like a one, two, three step equation.
3-4 Solving Equations with Variables on Both Sides Extension of AF4.1 Solve two-step linear equations in one variable over the rational numbers. Also covered:
Example 1: Solve. 4x + 6 = x 4x + 6 = x – 4x – 4x Subtract 4x from both sides. 6 = –3x 6 –3 –3x = Divide both sides by –3. –2 = x.
Warm Up Solve each equation. 1. 2x – 5 = –17 2. –6 14
1. solve equations with variables on both sides. 2. solve equations with either infinite solutions or no solution Objectives The student will be able to:
Sec. 1-5 Day 1 HW pg (16-26 even, 33-36). An identity is an equation that is true for all values of the variable. An equation that is an identity.
Solving Equations with Variables on Both Sides 7-3 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson.
Notes 3.4 – SOLVING MULTI-STEP INEQUALITIES
Page 504 # Pre-Algebra 10-3 Solving Equations with Variables on Both Sides Student Progress Chart Lesson Reflection.
§ 2.2 The Multiplication Property of Equality. Blitzer, Introductory Algebra, 5e – Slide #2 Section 2.2 Properties of Equality PropertyDefinition Addition.
Adapted by Mrs. Garay. Warm Up Solve. 1. 2x + 9x – 3x + 8 = – 4 = 6x + 22 – 4x 3. + = 5 4. – = 3 x = 1 x = –13 x = x x9x 16 2x2x 4.
§ 2.3 Solving Linear Equations. Martin-Gay, Beginning and Intermediate Algebra, 4ed 22 Solving Linear Equations Solving Linear Equations in One Variable.
Holt Algebra Solving Equations with Variables on Both Sides Warm Up Simplify. 1. 4x – 10x 2. –7(x – 3) – (x – 2) Solve. 5. 3x + 2 = 8 6.
Warm Up Solve. 1. 2x + 9x – 3x + 8 = –4 = 6x + 22 – 4x 3. + = 5
Solving Equations with the Variable on Each Side
Copyright 2013, 2009, 2005, 2002 Pearson, Education, Inc.
Preview Warm Up California Standards Lesson Presentation.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Solving Equations with Variables on Both Sides 1-5
Solving Linear Equations
Solving Equations with Variables on Both Sides
Chapter 2 Section 1.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Linear Equations and Applications
Chapter 2 Section 1.
Warm Up Solve. 1. 2x + 9x – 3x + 8 = –4 = 6x + 22 – 4x 3. + = 5
12 Systems of Linear Equations and Inequalities.
Warm Up Solve. 1. 3x = 102 = z – 100 = 21 w = 98.6 x = 34 y 15
Warm Up Simplify. 1. 4x – 10x 2. –7(x – 3) Solve. 3. 3x + 2 = 8.
Solving Equations Containing Rational Expressions § 6.5 Solving Equations Containing Rational Expressions.
Solving Equations by 2-1 Adding or Subtracting Warm Up
If an equation contains fractions, it may help to multiply both sides of the equation by the least common denominator (LCD) to clear the fractions before.
Solving Equations with Fractions
Section 4.2 Solving a System of Equations in Two Variables by the Substitution Method.
Presentation transcript:

HW # 32- Videos for section 3-4 AND p. 132 # 1-11 all Homework help online go.hrw.com keyword: MT8CA 3-4 Warm up a)5n + 3n – n + 5 = 26 b)-81 = 7k k c)37 = 15a-5a-3 d)Lydia rode 243 miles in a three-day bike trip. On the first day, Lydia rode 67 miles. On the second day, she rode 92 miles. How many miles per hour did she average on the third day if she rode for 7 hours? Week 9, Day Two

Warm Up Response a)5n + 3n – n + 5 = 26 n=3 b)-81 = 7k k k=-10 c)37 = 15a-5a-3 a=4 d)Lydia rod 243 miles in a three-day bike trip. On the first day, Lydia rode 67 miles. On the second day, she rode 92 miles. How many miles per hour did she average on the third day if she rode for 7 hours? 12 mi/h

Solving Equations with Variables on Both Sides (3-4) Work on Simplifying Expressions from yesterday’s class work

Slides for extra practice at home Note, some of the formatting may be off and the ppt moves from Mac to PC.

Solve. 4x + 6 = x Additional Example 1A: Solving Equations with Variables on Both Sides 4x + 6 = x – 4x 6 = –3x To collect the variable terms on one side, subtract 4x from both sides. Since x is multiplied by -3, divide both sides by –3. –2 = x 6 –3 –3x –3 =

You can always check your solution by substituting the value back into the original equation. Helpful Hint

Solve. 9b – 6 = 5b + 18 Additional Example 1B: Solving Equations with Variables on Both Sides 9b – 6 = 5b + 18 – 5b 4b – 6 = 18 4b4b = To collect the variable terms on one side, subtract 5b from both sides. Since b is multiplied by 4, divide both sides by 4. b = b = 24 Since 6 is subtracted from 4b, add 6 to both sides.

Solve. 9w + 3 = 9w + 7 Additional Example 1C: Solving Equations with Variables on Both Sides 3 ≠ 7 9w + 3 = 9w + 7 – 9w To collect the variable terms on one side, subtract 9w from both sides. There is no solution. There is no number that can be substituted for the variable w to make the equation true.

if the variables in an equation are eliminated and the resulting statement is false, the equation has no solution. Helpful Hint

Solve. 5x + 8 = x Check It Out! Example 1A 5x + 8 = x – 5x 8 = –4x Since x is multiplied by –4, divide both sides by –4. –2 = x 8 –4 –4x –4 = To collect the variable terms on one side, subtract 5x from both sides.

Solve. 3b – 2 = 2b + 12 – 2b b – 2 = b = 14 Since 2 is subtracted from b, add 2 to both sides. Check It Out! Example 1B To collect the variable terms on one side, subtract 2b from both sides.

Solve. 3w + 1 = 3w ≠ 8 3w + 1 = 3w + 8 – 3w To collect the variable terms on one side, subtract 3w from both sides. No solution. There is no number that can be substituted for the variable w to make the equation true. Check It Out! Example 1C

To solve more complicated equations, you may need to first simplify by combining like terms or clearing fractions. Then add or subtract to collect variable terms on one side of the equation. Finally, use properties of equality to isolate the variable.

Solve. 10z – 15 – 4z = 8 – 2z – 15 Additional Example 2A: Solving Multi-Step Equations with Variables on Both Sides 10z – 15 – 4z = 8 – 2z – z – 15 = –2z – 7Combine like terms. + 2z Add 2z to both sides. 8z – 15 = – 7 8z = 8 z = 1 Add 15 to both sides. Divide both sides by 8. 8z =

Additional Example 2B: Solving Multi-Step Equations with Variables on Both Sides Multiply by the LCD, 20. 4y + 12y – 15 = 20y – 14 16y – 15 = 20y – 14Combine like terms. y5y y53y – = y – y5y y53y – = y – 20 ( ) = 20 ( ) y5y y53y – y – 20 ( ) + 20 ( ) – 20 ( ) = 20(y) – 20 ( ) y5y5 3y53y

Additional Example 2B Continued Add 14 to both sides. –15 = 4y – 14 –1 = 4y + 14 –1 4 4y4y 4 = Divide both sides by 4. –1 4 = y 16y – 15 = 20y – 14 – 16y Subtract 16y from both sides.

Solve. 12z – 12 – 4z = 6 – 2z + 32 Check It Out! Example 2A 12z – 12 – 4z = 6 – 2z z – 12 = –2z + 38Combine like terms. + 2z Add 2z to both sides. 10z – 12 = 38 10z = 50 z = 5 Add 12 to both sides. Divide both sides by z =

Multiply by the LCD, 24. 6y + 20y + 18 = 24y – 18 26y + 18 = 24y – 18Combine like terms. y4y y65y = y – y4y y65y ( ) = 24 ( ) y4y y65y y – 24 ( ) + 24 ( ) + 24 ( ) = 24(y) – 24 ( ) y4y4 5y65y Check It Out! Example 2B

Subtract 18 from both sides. 2y + 18 = – 18 2y = –36 – 18 –36 2 2y2y 2 = Divide both sides by 2. y = –18 26y + 18 = 24y – 18 – 24y Subtract 24y from both sides. Check It Out! Example 2B Continued

Additional Example 3: Business Application Daisy ’ s Flowers sells a rose bouquet for $39.95 plus $2.95 for every rose. A competing florist sells a similar bouquet for $26.00 plus $4.50 for every rose. Find the number of roses that would make both florists' bouquets cost the same price. What is the price? Daisy ’ s: c = r Write an equation for each service. Let c represent the total cost and r represent the number of roses. total cost is flat fee plus cost for each rose Other: c = r

Additional Example 3 Continued r = r Now write an equation showing that the costs are equal. – 2.95r = r Subtract 2.95r from both sides. – Subtract from both sides = 1.55r r 1.55 = Divide both sides by = r The two bouquets from either florist would cost the same when purchasing 9 roses.

Additional Example 3 Continued To find the cost, substitute 9 for r into either equation. Daisy ’ s: The cost for a bouquet with 9 roses at either florist is $ c = r c = (9) c = c = 66.5 Other florist: c = r c = (9) c = c = 66.5

Check It Out! Example 3 Marla ’ s Gift Baskets sells a muffin basket for $22.00 plus $2.25 for every balloon. A competing service sells a similar muffin basket for $16.00 plus $3.00 for every balloon. Find the number of balloons that would make both baskets cost the same price. Marla ’ s: c = b total cost is flat fee plus cost for each balloon Other: c = b Write an equation for each service. Let c represent the total cost and b represent the number of balloons.

Check It Out! Example 3 Continued b = b Now write an equation showing that the costs are equal. – 2.25b = b Subtract 2.25b from both sides. – Subtract from both sides = 0.75b b 0.75 = Divide both sides by = b The two services would cost the same when purchasing a muffin basket with 8 balloons.