Tomoyuki MARUYAMA BRS, Nihon Univ (Japan) Collaborators

Slides:



Advertisements
Similar presentations
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Advertisements

Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Jan. 31, 2011 Einstein Coefficients Scattering E&M Review: units Coulomb Force Poynting vector Maxwell’s Equations Plane Waves Polarization.
Nucleon Effective Mass in the DBHF 同位旋物理与原子核的相变 CCAST Workshop 2005 年 8 月 19 日- 8 月 21 日 马中玉 中国原子能科学研究院.
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
2008GRB_Nanjing1 Hyperaccretion disks around Neutron stars Dong Zhang & Zigao Dai Nanjing University.
Physics of fusion power Lecture 11: Diagnostics / heating.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Lecture 25 Practice problems Boltzmann Statistics, Maxwell speed distribution Fermi-Dirac distribution, Degenerate Fermi gas Bose-Einstein distribution,
Lecture 27 Overview Final: May 8, SEC hours (4-7 PM), 6 problems
Ferromagnetic properties of quark matter a microscopic origin of magnetic field in compact stars T. Tatsumi Department of Physics, Kyoto University I.Introduction.
Ferromagnetism in quark matter and origin of magnetic field in compact stars Toshitaka Tatsumi (Kyoto U.) (for a recent review, hep-ph/ ) I. Introduction.
Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Strong Magnetic Field (SMaF) in Nuclear Astrophysics Myung-Ki Cheoun Astro Nuclear Physics Group Soongsil University, Seoul, Korea
From Supernovae to Neutron Stars
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
強磁場原始中性子星での ニュートリノ反応断面積の非対称性と関連現 象 1 共同研究者 日高 潤 国立天文台 日高 潤 国立天文台 国立天文台 黒田 仰生 国立天文台 滝脇 知也 国立天文台 滝脇 知也 国立天文台 梶野 敏貴 国立天文台 梶野 敏貴 国立天文台 安武 伸俊 千葉工大 安武 伸俊 千葉工大.
Equation Of State and back bending phenomenon in rotating neutron stars 1 st Astro-PF Workshop – CAMK, 14 October 2004 Compact Stars: structure, dynamics,
Neutrino reactions on two-nucleon system and core-collapse supernova
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
THERMAL EVOLUION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Catania, October 2012,
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
Моделирование магниторотационных процессов в коллапсирующих сверхновых и развитие Магнито-Дифференциально- Ротационной неустойчивости Сергей Моисеенко,
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Probing Neutron Star EOS in Gravitational Waves & Gamma-ray Bursts Kim Young-Min, Cho Hee-Suk Lee Chang.-Hwan, Park Hong-Jo (Pusan National University)
Trento, Giessen-BUU: recent progress T. Gaitanos (JLU-Giessen) Model outline Relativistic transport (GiBUU) (briefly) The transport Eq. in relativistic.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
Magnetic fields generation in the core of pulsars Luca Bonanno Bordeaux, 15/11/2010 Goethe Universität – Frankfurt am Main.
Qun Wang University of Science and Technology of China
Initial Data for Magnetized Stars in General Relativity Eric Hirschmann, BYU MG12, Paris, July 2009.
Who discovered the first pulsar? Jocelyn Bell Pulsars spin fast due to what physics concept?
Harleen Dahiya Panjab University, Chandigarh IMPLICATIONS OF  ´ COUPLING IN THE CHIRAL CONSTITUENT QUARK MODEL.
22.7 Source of magnetic field due to current
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama.
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
带强磁场奇异星的 中微子发射率 刘学文 指导老师:郑小平 华中师范大学物理科学与技术学院. Pulsar In 1967 at Cambridge University, Jocelyn Bell observed a strange radio pulse that had a regular period.
Neutron Star Kicks Chris Fryer Aimee Hungerford Frank Timmes  Observational Evidence and constraints on kicks  Theoretical kick mechanisms.
Relativistic Stars with Magnetic Fields
【 May. 20th CS QCD II 】 N. Yasutake (NAOJ) 安武 伸俊 N. Yasutake (NAOJ) 安武 伸俊 The pasta structure of quark-hadron phase transition and the effects on.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
Compact Stars With a Dyson- Schwinger Quark Model 1 陈 欢 Collaborate with 魏金标( CUG ), M. Baldo, F. Burgio and H.-J. Schulze ( INFN ). 2015“ 中子星与核天体物理 ”
8th APCTP-BLTP JINR Joint Workshop, Jeju, Effects of Strong Magnetic Field (SMaF) on the Neutron Stars Myung-Ki Cheoun Astro Nuclear Physics.
Development of magneto- differential-rotational instability in magnetorotational supernovae Sergey Moiseenko, Gennady Bisnovatyi-Kogan Space Research Institute,
Lecture 2 - Feynman Diagrams & Experimental Measurements
PHYS.NANKAI UNIVERSITY Relativistic equation of state of neutron star matter and supernova matter H. Shen H. Shen Nankai University, Tianjin, China 申虹.
Lecture 4 – Quantum Electrodynamics (QED)
A pulsar is a supernova remnant which is a super dense, rapidly spinning neutron star which emits dipole electromagnetic radiation and features a strong.
Relativistic EOS for Supernova Simulations
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Possible Ambiguities of Neutrino-Nucleus Scattering in Quasi-elastic Region K. S. Kim School of Liberal Arts and Science, Korea Aerospace University, Korea.
Handout 3 : Interaction by Particle Exchange and QED
Open quantum systems.
Possible Ambiguities of Neutrino-Nucleus
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
Quark star RX J and its mass
Lecture 25 Practice problems
MERGING REVEALS Neutron Star INNARDS
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
INFN Sezione di Catania
Accelerator Physics Synchrotron Radiation
PHYS 3446 – Review Review Note Test deferred until Weds.
Presentation transcript:

Asymmetric Neutrino Emission from Strongly Magnetized Neutron Star (強磁性中性子星からの非対称ニュートリノ放出) Tomoyuki MARUYAMA BRS, Nihon Univ. (Japan) Collaborators  Toshitaka KAJINO    Nao, Univ. of Tokyo  (Japan)  Nobutoshi YASUTAKE INFN, Catania  (Italy)  Myung-ki CHEOUN Soongs Univ.  (Korea)  Chung-Yeol RYU Soongs Univ.  (Korea)  Jun HIDAKA Nao (Japan)  G.J. MATHEWS Univ. of Notre Dome    (USA) +   Takami KURODA Nao (Japan) 1

in the Relativistic Mean-Field (RMF) Approach §1. Introduction Structure of Proto-Neutron Stars : Strange Matter, Ferromagnetism   Observable Information ‥‥Neutrino Emissions S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998)       Influence from Hyperons Λ,∑ Ferromagnetism → Large Asymmetry ?   P. Arras and D. Lai, P.R.D60, #043001 (1999) S. Ando, P.R.D68 #063002 (2003) Magnetar 1015G in surface 1017-19G inside (?)  Our Works ⇒ Neutrino Reactions on High Density Matter with with Strong Mag. Fields in the Relativistic Mean-Field (RMF) Approach TM et al., PRD83, 081303(R) (2011) Neutrino Scattering & Absorption in Surface Region 4

Birth of Proto-neutron Star 5 5

In Hot and Dense Neutron-Star-Matter Pulsar Kick CasA A.G.Lyne, D.R.Lomier, Nature 369, 127 (94) Asymmetry of Supernova Explosion kick and translate Pulsar with Kick Velocity: Average … 400km/s, Highest … 1500km/s    Explosion Energy ~ 1053 erg (almost Neutrino Emissions)   1% Asymmetry are sufficient to explain the Pulsar Kick http://chandra.harvard.edu/photo/ 2004/casa/casa_xray.jpg Present Work ‥ Neutrino Scattering and Absorption In Hot and Dense Neutron-Star-Matter Estimating Kick Velocity and Spin of NS 8

S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) §2. Formulation Magnetic Field : Lepton B & L – Mag. Baryon Proto-Nuetron-Star (PNS) Matter without Mag. Field Baryon Wave Function under Mag. Field in Perturbative Way Cross-Sections for n reactions Weak Interaction e + B → e + B : scattering e + B → e- + B’ : absorption   S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998)

§2-1 RMF Approach for Neutron-Star Mattter

T.M, H. Shin, H. Fujii, & T. Tatsumi, EOS of PM1-1 T.M, H. Shin, H. Fujii, & T. Tatsumi, Prog. Theo. Phys. Vol.102, P809

EOS of Proto Neutron-Star-Matter Charge Neuttral ( ) & Lepton Fraction : Yp = 0.4

§2-2 Dirac Equation under Magnetic Fields  N B << εF (Chem. Pot) → B can be treated perturbatively        Landau Level can be ignored  ~ 1017 G Magnetic Part of Lagrangian Dirac Eq.

Dirac Spinor Spin Vector 3 negligibly small Dirac Spinor Spin Vector 1414

Momentum Distr. of Major Part   Fermi Distribution Momentum Distr. of Major Part is deformed as oblate Relativistic Effects of Magnetic Contributions Momentum Dependent of Spin Vector Deformation of Fermi Distribution 15

When B → 0 , the wave function → plane wave Electron Landau Level When B → 0 , the wave function → plane wave

§2-3 The Cross-Section of ν-B   Fermi Distribution Deformed Distribution Perturbative Treatment Non-Magnetic Part Magnetic Part 17

The Cross-Section of Lepton-Baryon Scattering with Spin-independent part

Spin-dependent Part

Electron Contribution Single Particle Energy Sum of Landau Level Expectation Value of Quantity A Perturbation Spin vector

Final electron contribution in ne → e-

§3 Results of Cross-Sections No magnetic field

Differential Cross-Sections in Magnetic Field 3% difference

Initial Angle-Dependence

Magnetic parts of Cross-Sections Scat. Increasing  in Dir. parallel to B Integrating over the initial angle Absorp. Integrating over the final angle 25

Magnetic Parts of Cross-Sections

Neutrino Mean-Free Paths scattering absorption

Contribution of Each Element in Scattering Part

Contribution of Each Element in Absorption Part

EOS of Neutron-Star-Matter with p, n Λ in RMF Appraoch Cross-Sections of Neutrino Scattering and Absorption under Strong Magnetic Field, calculated in Perturbative Way Neutrinos are More Scattered and Less Absorbed in Direction Parallel to Magnetic Field    ⇒ More Neutrinos are Emitted in Arctic Area Scattering 1.7 % Absorption 2.2 % at ρB=3ρ0 and T = 20 MeV 30

§4 Estimating Pulsar Kick Velocities of Proto-Neutron Star CasA A.G.Lyne, D.R.Lomier, Nature 369, 127 (94) Asymmetry of Supernova Explosion kick and translate Pulsar with Kick Velocity: Average … 400km/s, Highest … 1500km/s   http://chandra.harvard.edu/photo/ 2004/casa/casa_xray.jpg  Explosion Energy ~ 1053 erg (almost Neutrino Emissions)   1% Asymmetry is sufficient to explain the Pulsar Kick D.Lai & Y.Z.Qian, Astrophys.J. 495 (1998) L103 Estimating Kick Velocity of PNS with T = 20 MeV and B = 2× 1017G Poloidal Magnetic Field 2‐3% Asymmetry in Absorption 31

Neutrino Transportation Neutrino Phase Space Distribution Function Equil. Part Non-Equil. Part Other Pieces are equilibrium Neutrino Propagation ⇒ Boltzmann Eq.  Neutrinos Propagate on Strait Line only absorption Solution ⇒

Mean-Free Paths Magnetic Parts SA: fitting function Scattering Absorption

Baryon density in Proto-Neutron Star M = 1.68Msolar YL = 0.4 Calculating Neutrino Propagation above rB = r0

Baryon density in Proto-Neutron Star T = 20 MeV M = 1.68 Msolar YL = 0.4 Calculating Neutrino Propagation above rB = r0

θ Neutrino Propagation Neutrinos propagate on the straight lines 2) Neutrino are created and absorbed at all positions on the lines Mean-Free Path : σab/V \ θ

Angular Dep. of Emitted Neutrinos in Uniform Poloidal Mag. Field             p, n p, n, L T = 20 MeV Observable Average … 400km/s,

§5 Angular Deceleration in Toroidal Magnetic Field Stability of Magnetic Field in Compact Objects (Braithwaite & Spruit 2004) Toroidal Magnetic Field is stable !! Mag. Field Parallel to Baryonic Flow Assym. of n-Emit. must decelerate PNS Spin 38

No poloidal Magnetic Field at the beginning Single Toroidal by T. Kuroda

Finite Polaidal Magnetic Field at the beginning Anti-paralleled Double Toroidal by 黒田

Toroidal Magnetic Field T = 20MeV Dr = 0.5 (km) R0 = 8 (km) Mag.‐A R0 = 5 (km) Mag.‐B z = 0

Angular Deceleration B [G] Neutrino Luminosity (dET/dt)n ~ 3×1052 erg/s Period P = 10s Magnetic Dipole Rad. Mag Distr. Bary. B [G] at rB = r0 (cm) (n emis.) (g rad.) Mag-A p,n 1.0×1016 46.7 3.02×10-2 4.82×10-2 1.0×10-8 p,n,L 1.6×1016 70.6 5.19×10-2 8.26×10-2 2.6×10-8 Mag-B 2.6×1013 0.157 1.01×10-4 1.61×10-4 6.6×10-14 4.2×1013 0.259 1.90×10-4 3.03×10-4 1.7×10-13 In Early Stage (~ 10 s) n Asymmetric Emission must affect PNS Spin More Significantly than Magnetic Dipole g-Radiation 42

§5 Summary EOS of Neutron-Star-Matter with p, n, Λ in RMF Approach 43 EOS of Neutron-Star-Matter with p, n, Λ in RMF Approach Exactly Solving Dirac Eq. with Magnetic Field in Perturbative Way Cross-Sections of Neutrino Scattering and Absorption under Strong Magnetic Field, calculated in Perturbative Way Neutrinos are More Scattered and Less Absorbed                      in Direction Parallel to Magnetic Field    ⇒ More Neutrinos are Emitted in  Arctic  Area Scattering 1.7 % Absorption 2.2 % at ρB=3ρ0 and T = 20 MeV  ⇒ Convection, Pulsar-Kick

Pulsar Kick in Poroidal Mag. Field B = 2× 1017G ⇒ Perturbative Cal.    vkick = 580 km/s ( p,n ) , 610 km/s (p,n,Λ) at T = 20 MeV      = 230 km/s ( p,n ) , 270 km/s (p,n,Λ) at T = 30 MeV      400 km/s (Average of Observed Values)     Spin Deceleration  in Toroidal Magnetic Field Asymmetric n-Emission plays an important role in PNS Spin in Early Time Future Plans   n-Scattering Fixed Temp. ⇒ Constant Entropy Exact Solution of Dirac Eq. in Non-Perturbative Cal.   →  Landau Level at least for Electron Antarctic Dir. Mag Distr. (P = 10 s) p,n p,n,L Mag-A 4.8×10-3 5.2×10-3 Mag-B 6.1×10-3 7.2×10-3 Dpl. Rad. 9.8×10-11 Reestimating when B = 1015G in the surface with r = r0 44

EOS in Iso-Entropical Model

§2-1 Neutron-Star Matter in RMF Approach RMF Lagrangian, N, L, s, , r Dirac Eq. Scalar Field ⇒ Effective Mass

Dirac Spinor Spin Vector negligibly small Dirac Spinor Spin Vector

Spin-indep. part Spin-dep. Part

θ Neutrino Propagation Neutrinos propagate on the straight lines 2) Neutrino are created and absorbed at all positions on the lines Mean-Free Path : σab/V \ θ

Absorption Mean-Free Path 30MeV SA: fitting function 50MeV 100MeV 200MeV 300MeV

§3 Results 3% difference

Neutrino Mean-Free-Path at Energy equal to Chem. Potential

Magnetic Parts of Cross-Sections

Magnetic Parts of Cross-Sections