1 RADIATION DEFECTS AND OXIDATION STATE OF nl- IONS IN NON-STOICHIOMETRICAL OXIDES Nicolay A. Kulagin Kharkiv National University for Radio Electronics,

Slides:



Advertisements
Similar presentations
Unit 3 Part 2 The Periodic Table ICP Mr. Patel SWHS.
Advertisements

Chapter 7 periodic trends
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
THE PERIODIC TABLE.
Copyright 2011 CreativeChemistryLessons.comCreativeChemistryLessons.comRemember! Metals LOSE Electrons (CATIONS)Metals LOSE Electrons (CATIONS) Non-Metals.
The Nature of Molecules
Periodic Table – Filling Order
THE PERIODIC TABLE.
Neutron (no charge) Hydrogen 1 Proton 1 Electron Oxygen 8 Protons 8 Neutrons 8 Electrons a. b. proton (positive charge) electron (negative charge) Copyright.
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
Binary Compounds Metals (variable oxidation) + Nonmetals.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
CH. 2 atomic models electronic configuration oxidation numbers
A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes.
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
Periodic Table of Elements. gold silver helium oxygen mercury hydrogen sodium nitrogen niobium neodymium chlorine carbon.
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Trends of the Periodic Table
Periodic Table Of Elements
Metals, Nonmetals, Metalloids
Photoelectron Spectroscopy
s p d (n-1) f (n-2) 6767 Periodic Patterns 1s1s1s1s 2s2s2s2s 3s3s3s3s 4s4s4s4s 5s5s5s5s 6s6s6s6s 7s7s7s7s 3d3d3d3d 4d4d4d4d 5d5d5d5d 6d6d6d6d 1s1s1s1s.
Organization of The Periodic Table Mrs. Russotto.
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Modern Periodic Table Objective:
Electron Configuration Filling-Order of Electrons in an Atom.
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
Electron Configuration
8 - 1 Sublevels and Orbitals Effective Nuclear Charge Inner (core) electrons act to shield outer (valence) electrons from the positive charge of the nucleus.
D x 2 – y 2 Lanthanides Actinides G block Inrt P x P y P z D x y D x z D y z D z 2 New periodic table of elements Nodal point.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
Chapter 6 Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
When and who? In 1869 Russian Chemist Dimitri Mendeleev and German chemist Lothar Meyer published nearly identical ways of classifying.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Electron Configuration
Periodic Table of Elements
TOPIC 0C: Atomic Theory.
The Periodic Table
1.7 Trends in the Periodic Table
Introduction To Chemistry
The Periodic Table and Periodic Law
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Chemeketa Community College
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Groups of Elements 1A 8A H He 2A 3A 4A 5A 6A 7A Li Be B C N O F Ne Na
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
Periodic Trends Atomic Size Ionization Energy Electron Affinity
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
THE PERIODIC TABLE.
Periodic Table of the Elements
Electron Configuration
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
Introduction To Chemistry
What Things Do I have To Memorize in AP Chem?
PERIODIC TABLE OF ELEMENTS
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Line Spectra and the Bohr Model
1.5 Periodic Table: History & Trends
PeRiOdIc TaBlE of ElEmEnTs
Electron Configurations and the Periodic Table
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

1 RADIATION DEFECTS AND OXIDATION STATE OF nl- IONS IN NON-STOICHIOMETRICAL OXIDES Nicolay A. Kulagin Kharkiv National University for Radio Electronics, av. Shakespeare 6-48, Kharkiv 61045, Ukraine. Szczecin May,

2 Outline of the talk - Radiation stimulated by X rays, gamma, electrons and particles charges transfer in oxides : sapphire, garnets, perovskites; - Optical absorption, luminescence, EPR and TSL-TSC spectra of irradiative oxides doped with nd- and nf- ions; - X Ray spectra and oxidation state of component and doped nl- ions; - Ab initio energy calculations for doped and radiation clusters and unit defects; - Electronic state stability of doped nl- ions under radiation of oxides; - Change of oxides surface under plasma treatment: quasi- ordered nano-scale structures; - Shot summary

4 Growth and Treatment The main methods of crystallization of the oxide single crystals Czochralsky - Cz; Verneuil - V; Method of horizontal and vertical crystallization - DC; Stepanov – S, etc. Mixtures of different quality and different concentration - C of accidental impurities were used for oxides crystals growth: * super- pure (C <10 -5 wt %), * pure (C <10 -3 wt %), and * standard one ((C <10 -2 wt %) Thermal treatments and co-doping by Ca, Mg O 2, 1200 <T <1800 K; CO 2, 1500 <T <1800 K; vacuum, Torr, 1500 <T <1900 K;

5 Pure Sapphire – Al2O3 Optical absorption of sapphire grown by different methods

6 TABLE. Spectral parameters of the sapphire grown by different techniques SampleAbs.edge nm Optical Bands, nm AA bands nm TL, nm TSC peaks T, K TL bands nm V195206*, 225*, 260*, 400* , 225, 280, , VpVp , 206, 230, 400* 206, 225, 280, 475* 4385, , V sp *,206*, 230*No AA0.1430, 507* , DC145175, 206* 235* 206, 230no TL398*, 507*- DC r , 206, , *, 470* 8373, 506, , Cz r *, , , , , 690 CrCr , 225*No AAno TL387*, 426* 485* ---- SrSr , , ,418, 430, 506* Pure Sapphire – Al2O3

7 Ruby – Radiation Effect Optical absorption of ruby: Al2O3:Cr

8 Structure and Defects Simplified garnet structure

9 Pure Garnet Optical absorption of pure YAG crystals grown by Chochralsky – 1 and HDC – methods

10 Optics of Y 3 Al 5 O 12 :Nd:Cr Garnets – Radiation Effect Optical absorption of YAG before and after irradiation

11 TSL – TSC spectra for YAG pure and doped with Cr:Nd

12 ESR of Cr +3 ion in Garnet EPR spectra of Cr*3 ions in YAG crystals

13 Optics of GSGG and GSAG Garnets doped with Cr and Ca OAS of doped garnets before and after thermal treatment

14 Optics of YAG:V +3 – Thermal Treatment OAS spectra of V*3 ions in YAG crystals

15 Theoretical Results - Cr +3: [O -2 ] 6 Cluster under Pressure Table 2. Theoretical values of radial integrals for Cr +3 ions in Cr +3 :[O -2 ] 6 clusters for different R IntegralFree ion / R = Configuration 3d 3 F 2 (3d,3d), cm F 4 (3d,3d), cm  (3d), cm (3d|r|3d ), a.u

16 Theoretical Results - Cr +3: [O -2 ] 6 Cluster, Ruby and YAG R Cr-O (Å)\ Level 2E2E 2T12T1 4T24T2 2T22T2 4 T 1 (t 2 2 e) 4 T 1 (t 2 e 2 ) Theory R = 2.0 Å Ruby Experiment Semiempirical Table1. Dependence of Cr +3 ions energy levels on R Cr-O (cm -1 )

17 Theoretical Results - Cr +3: [O -2 ] 6 Table 3. Semiempirical and theoretical data for B, C and Dq for Cr +3 ions in different crystals (cm-1) Integral  -Al 2 O 3 Y 3 Al 5 O 12 Gd 3 Sc 5 O 12 Gd 3 Sc 2 Ga 3 O 12 Cr +3 :[O -2 ] 6 B C Dq

18 Theoretical Results - 3d 2 configuration of Cr +4: [O -2 ] 6 2S+1 Γ(t,e) – levelEnergy, cm -12S+1 Γ(t,e)- levelEnergy,cm -1 3 T 1 (t 2 2 ) 0 1 T 2 (t 2 e) E(t 2 2 ) A 2 (e 2 ) T 2 (t 2 2 ) T 1 (t 2 e) T 2 (t 2 e) E(e 2 ) A 1 (t 2 2 ) A 1 (e 2 ) T 1 (t 2 e) Table 4. Theoretical level scheme for ion Cr +4 in ruby (Dq = 1990 cm -1, B = 1050 cm -1 and C = 3873 cm -1 )

19 Optics of Garnets – Cr +4 Energy Levels Schemes TABLE 10. Energy levels of Cr 4+ :[O 2- ] 4 cluster Y 3 Al 5 O 12 Gd 3 Sc 2 Ga 3 O 12 2S+1 Γ λ theor, nm λ exp, nm λ theor, nm λ exp, nm 3 A E T T A T T T

20 Perovskites – ABO 3 LiNbO 3 :Cr -> A - Li +, B – Nb +5 YAlO 3 :Cr/Nd -> A – Y +3, B – Al +3 SrTiO 3 :V, Mn, Fe, Co, Ni / Pr, Nd, Sm, Tm A – Sr +2 (RE +2, +3 ), B – Ti +4 (Me +2, +3, +4 ) Simplified structure of perovskite

21 Perovskite - YAlO3:Cr:Nd OAS spectra of Cr*3 ions in YAlO 3 crystals

22 Perovskite SrTiO 3 Optical Absorption Optical absorption of SrTiO 3 crystals. Pure (1) and blue sample (2) – a, crystals doped with RE – b (1 - Sm, 2 – Pr, 3 – Nd, 4 – Tm)

23 Dielecrical Properties of SrTiO 3

24 Dielecrical Properties of SrTiO3

25 Structure and Defects in SrTiO3 Energy zones of a wide – band gap crystal with different transitions and local levels

26 X Ray Lines of nl N Ions X Ray lines: K α 1 : 1s 1/2 2p 3/2 transition n’l -1 nl N - L α 1 : 2p 3/2 3d 5/2 transition configurations nl- level nl J - spin-orbit level 3d d 5/2 ============= d 3/ p 3/2 2p ============= p 1/2 1s ============= ============= 1s 1/2

27 X Ray Microanalysor

28 CrK α - Line Valency Shift for Irradiated Ruby and Garnet

29 Perovskite SrTiO 3 X Ray

30 Energy of X Ray of RE and AC ions REE (K  1 )E(K  1 )E(L  1 ) Nd , , ,471 Nd , , ,708 Nd , , ,449 Eu , , ,357 Eu , , ,793 Eu , , ,622 Gd , , ,622 Gd , , ,971 Gd , , ,614 Yb , , ,563 Yb , , ,668 Yb , , ,100 U , , ,793 U , , ,528 U , , ,200 Np , , ,953 Np , , ,674 Np , , ,346

31 K  1 - line L  1 - line Ion E 0 a-b E 0 a -b Ac ,7890, Th ,5420, Pa ,5650, U ,8680, Np ,4810, Pu100738,5420,6910, ,3560, Am103210,6480,7240, ,2260, Cm105721,6130,7670, ,2490, Bk108272,1340,8260, ,3230, Cf110862,5720,8820, ,8060, Es113493,3970,9200, ,5600, Fm116165,2340,9350, ,0480, Md118877,8470,9770, ,3960, No124428,7621,0350, ,6940,

32 SEM Picture after SrTiO 3 :Sm Plasma Treatment

33 SEM Picture after SrTiO3:Tm Plasma Treatment

34 SEM Picture after SrTiO3:Nd Plasma Treatment

35 3D- AFM Picture after SrTiO 3 :Sm Plasma Treatment

36 3D-AFM Picture after SrTiO 3 : Ni Plasma Treatment

3 Energy Levels Scheme Parametrization of nl(f)- Ions

5 Theoretical Foundations Free Ions HFP approach Doped Crystals HL-SCF for Clusters

39 Theoretical Foundations – Ions and Hamiltonians Ion – nl N : Me – 3d N, RE - 4f N, AC - 5f N => ME The main configurations: nl N and nl N n’l’ N’ Cluster: ME +n : [L] k. Ligand – O -2, F -, Cl - etc

6 Theoretical Foundations – Energy of Cluster,,

41 Theoretical Foundations – Radial Integrals

42 Theoretical Results - 3d 2 4p configuration of Cr +3 in Cr +3 :[O -2 ] 6 IntegralFree / R(Å) = Configuration 3d 2 4p F 0 (3d,4p), cm F 2 (3d,4p), cm G 1 (3d,4p), cm G 3 (3d,4p),cm  (3d), cm  (4p), cm (3d|r|3d) a.u (4p|r|4p) a.u (4p|r|4p) a.u ΔE(3d 3 –3d 2 4p), eV

43 Self Consistent Field Equations for nl-Ions in Solids

44 Self-Consistent Potential for nl-Ions in Solids

45 Self Consistent Field Equations for nl-Ions in Solids Boundary conditions: P(nl|r)| r →∞ → 0 - for unit center or impurity ion Wigner-Zeits conditions: ∂P(nl|r)/∂r | r→R → 0 for cluster and crystal

7 SCF Potential and Radial Wave Functions for nf- Ions

47 Short Summary Ab initio study of the electronic structure of ME +n :[L] k -clusters and energy of X-ray lines is a powerful and effective method of investigation of foundations of doped materials. This method and optical spectra of nl- ions in oxides - on the one hand and study of the influence of irradiation or thermal treatment to crystals doped with d- or/and f ions on the other hand allow to explain of the nature of radiation defects into doped oxides and draw the simple conclusion that stability of the oxidation state of ions in crystals is determined relation of energy of ionization of ME +n ion – I Me and Madelung's constant α M = - ΣZ i /r i for the cation site.

48 Concluding Remarks Crystals growth method determines the main defects of the oxides through crystals stoichiometry Crystals stoichiometry determines electronic state and ions valency and properties of the oxide single crystals, too Relation A/O changes: - for simple oxides up 0.95 to for garnet crystals A/B changes up 0.9 to for perovskites – 0.98 (A 1-x B 1-y O 3-z ) Value of A/O and A/B is determined by possibility of the regular nd and nf ions to change their valency. We can used non-stoichiometry oxides for expansion of area of employment of the pure and doped single crystals