Gate-Level Minimization

Slides:



Advertisements
Similar presentations
Chapter 3 Gate-Level Minimization
Advertisements

Chapter 3 Gate-Level Minimization
Digital Logic Design Gate-Level Minimization
©2010 Cengage Learning SLIDES FOR CHAPTER 6 QUINE-McCLUSKEY METHOD This chapter in the book includes: Objectives Study Guide 6.1Determination of Prime.
Gate-level Minimization
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
1 集合論 Chapter 3. 2 Chapter 3 Set Theory 3.1 Sets and Subsets A well-defined collection of objects (the set of outstanding people, outstanding is very.
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
Gate-Level Minimization
Gate-Level Minimization. Digital Circuits The Map Method The complexity of the digital logic gates the complexity of the algebraic expression.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
1. 假設以下的敘述為一未提供 “ 捷徑計算 ” 能力的程式段,試用程 式設計的技巧,使此敘述經此改 寫的動作後,具有與 “ 捷徑計算 ” 之 處理方法相同之處理模式。 if and then E1 else E2 endif.
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
Fugacity Coefficient and Fugacity
Lecture 7 Sorting in Linear Time. Sorting in Linear Time2 7.1 Lower bounds for sorting 本節探討排序所耗用的時間複雜度下限。 任何一個以比較為基礎排序的演算法,排序 n 個元 素時至少耗用 Ω(nlogn) 次比較。
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 10 m-way 搜尋樹與B-Tree
: Help My Brother ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11033: Help My Brother 解題者: 呂明璁 解題日期: 2007 年 5 月 14 日.
計算機概論 第6章 數位邏輯設計.
2005/7 Linear system-1 The Linear Equation System and Eliminations.
Introduction Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
VHDL語法(3).
©2010 Cengage Learning SLIDES FOR CHAPTER 7 MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES This chapter in the book includes: Objectives Study Guide 7.1Multi-Level.
©2010 Cengage Learning CHAPTER 2 BOOLEAN ALGEBRA 2.1Introduction 2.2Basic Operations 2.3Boolean Expressions and Truth Tables 2.4Basic Theorems 2.5Commutative,
©2010 Cengage Learning CHAPTER 4 APPLICATIONS OF BOOLEAN ALGEBRA MINTERM AND MAXTERM EXPANSIONS This chapter in the book includes: Objectives Study Guide.
1 Logic Gates Digital Computer Logic Kashif Bashir WWW:
Chapter 2 Boolean Algebra and Logic Gates 授課教師 : 張傳育 博士 (Chuan-Yu Chang Ph.D.) Tel: (05) ext.
Gate-Level Minimization Chapter 3. Digital Circuits The Map Method The complexity of the digital logic gates the complexity of the algebraic expression.
D IGITAL L OGIC D ESIGN I G ATE -L EVEL M INIMIZATION.
D IGITAL L OGIC D ESIGN I G ATE -L EVEL M INIMIZATION.
Chapter 4 Combinational Logic 授課教師: 張傳育 博士 (Chuan-Yu Chang Ph.D.)
October 29, 2015 EASTERN MEDITERRANEAN UNIVERSITY1 Digital Logic Design I Gate-Level Minimization Mustafa Kemal Uyguroğlu.
Chapter 3 Gate-Level Minimization
©2010 Cengage Learning CHAPTER 3 BOOLEAN ALGEBRA (continued) 3.1Multiplying Out and Factoring Expressions 3.2Exclusive-OR and Equivalence Operations 3.3The.
Logic Design CS221 1 st Term Logic-Circuit Implementation Cairo University Faculty of Computers and Information.
EE345 – Micro-Controllers Gate-Level Minimization Prof. Ahmad Abu-El-Haija.
Gate-Level Minimization
Gate-level Minimization
D IGITAL L OGIC D ESIGN I G ATE -L EVEL M INIMIZATION.
卡諾圖 卡諾圖是化簡布林表示式的方法。 目的是減少數位系統中邏輯閘數目。 Gate-level minimization.
Chap 2. Combinational Logic Circuits. Chap Binary Logic and Gates l 디지털 회로 (Digital circuits) o hardware components that manipulate binary information.
Chapter3: Gate-Level Minimization Part 1 Origionally By Reham S. Al-Majed Imam Muhammad Bin Saud University.
3.Gate-Level Minimization
Chapter 3 Gate-level Minimization. 3-7 NAND and NOR Implementation Digital circuits are frequently constructed with NAND or NOR gates rather than with.
A.Abhari CPS2131 Chapter 3: Gate-Level Minimization Topics in this Chapter: The Map Method Two-Variable Map Three- Variable Map Four/Five variable Map.
LOGIC GATES & BOOLEAN ALGEBRA
CS 1110 Digital Logic Design
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp 92 Parity Method Pp 94 The parity method.
Chapter 3 Gate-Level Minimization
CS 121 Digital Logic Design Gate-Level Minimization Chapter 3.
Gate-Level Minimization Gate-Level Minimization. Outline 3.1 Introduction 3.2 The map method 3.3 Four-variable map 3.4 Five-variable map 3.5 Product of.
6-1 基本加法器 6-2 平行二進位加法器 6-3 比較器 6-4 解碼器 6-5 編碼器 6-6 數碼轉換器 6-7 多工器 ( 資料選擇器 ) 6-8 解多工器 6-9 同位元產生器 / 檢 查器.
Chap 2. Combinational Logic Circuits
Digital Integrated Circuit Design Laboratory Department of Computer Science and Information Engineering National Cheng Kung University Experiment on digital.
Digital Design: Principles and Practices Chapter 4 Combinational Logic Design Principles.
Boolean Algebra & Logic Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
Fuw-Yi Yang1 數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: Fuw-Yi.
Speaker: Fuw-Yi Yang 楊伏夷 伏夷非征番, 道德經 察政章(Chapter 58) 伏者潛藏也
FIGURE 3.1 Two-variable K-map
CHAPTER 3 Simplification of Boolean Functions
مدار منطقی Logic Circuits
Digital Logic Design I Gate-Level Minimization
Presentation transcript:

Gate-Level Minimization Chapter 3 Gate-Level Minimization 授課教師: 張傳育 博士 (Chuan-Yu Chang Ph.D.) E-mail: chuanyu@yuntech.edu.tw Tel: (05)5342601 ext. 4337 Office: EB212

3-1 Introduction Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.

3-2 The Map Method The complexity of the digital logic gates the complexity of the algebraic expression Logic minimization algebraic approaches: lack specific rules the Karnaugh map a simple straight forward procedure a pictorial form of a truth table applicable if the # of variables < 7 A diagram made up of squares each square represents one minterm

3-2 The Map Method (cont.) Boolean function sum of minterms sum of products (or product of sum) in the simplest form The simplest algebraic expression is an algebraic expression with a minimum number of terms a minimum number of literals The expression produces a circuit diagram with A minimum number of gates and the minimum number of inputs to each gates The simplified expression may not be unique

Two-Variable Map A two-variable map four minterms x' = row 0; x = row 1 y' = column 0; y = column 1 a truth table in square diagram xy x+y = Fig. 3.2 Representation of functions in the map

A three-variable map Eight minterms The Gray-code-like sequence Any two adjacent squares in the map differ by only one variable primed in one square and unprimed in the other e.g., m5 and m7 can be simplified m5+ m7 = xy'z + xyz = xz (y'+y) = xz

A three-variable map (cont.) Example 3-1 F(x,y,z) = S(2,3,4,5) F = x'y + xy'

A three-variable map (cont.) m0 and m2 (m4 and m6) are adjacent m0+ m2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z' m4+ m6 = xy'z' + xyz' = xz' (y'+y) = xz'

A three-variable map (cont.) Example 3-2 F(x,y,z) = S(3,4,6,7) = yz+ xz'

Four adjacent squares 2, 4, 8 and 16 squares m0+m2+m4+m6 = x'y'z'+x'yz'+xy'z'+xyz' = x'z'(y'+y) +xz'(y'+y) = x'z' + xz‘ = z' m1+m3+m5+m7 = x'y'z+x'yz+xy'z+xyz =x'z(y'+y) + xz(y'+y) =x'z + xz = z

Example 3-3 F(x,y,z) = S(0,2,4,5,6) F = z'+ xy'

Example 3-4 F = A'C + A'B + AB'C + BC express it in sum of minterms find the minimal sum of products expression

3-3 Four-Variable Map The map 16 minterms combinations of 2, 4, 8, and 16 adjacent squares

Example 3-5 F(w,x,y,z) = S(0,1,2,4,5,6,8,9,12,13,14) F = y'+w'z'+xz'

Example 3-6 Simplify the Boolean function F = ABC + BCD + ABCD + ABC

卡諾圖化簡的規則 輸入端有N個變數時,則繪出2N個空格與其對應。 將真值表內輸入所對應的輸出依次填入空格內。 如果為布林代數式時: 當布林代數式為SOP型時,將1填入對應的方格內,其餘的部分則填0。 當布林代數式為POS型時,將0填入對應的方格內,其餘的部分則填1。 若沒有明確的輸出則填入×或(don’t care)。 圈選的相鄰項越大越好,其中,相鄰項的個數須符合2n。 n=0,20=1,當圈一格時無法消去任何變數。 n=1,21=2,當圈二格時可以消去1個變數。 n=2,22=4,當圈四格時可以消去2個變數。 n=3,23=8,當圈八格時可以消去3個變數。 n=4,24=16,當圈十六格時可以消去4個變數。 圈在一起的0或1必須滿足相鄰間僅有一個位元不同。 用最少的圈圈,把所有1的項圈起來。 圈過還可再圈。

Prime Implicants 意含項(implicant): 質含項(prime implicant): 任一個乘積項即為該函數的一個意含項(implicant),i.e,在卡諾圖內,由含有“1”之方格所組合的所有矩形均是implicant。 質含項(prime implicant): 某一implicant不再為另一個implicant的子集(subset)此種implicant稱為prime implicant。 必要項(essential prime implicant): 若函數的某個最小項(min term)僅包含在其中一個prime implicant時,則該prime implicant稱為必要項(essential prime implicant)

求下列卡諾圖之prime implicant, essential prime implicant。 由卡諾圖中可看出, prime implicants= essential prime implicants= X YZ 1 10 11 01 00

求F(A, B, C, D)=(0, 1, 2, 4, 5, 10, 11, 13, 15)之必要項及最簡的SOP。 由卡諾圖中可看出共有7個prime implicant,其中essential prime implicant只有1項 因此,化簡後 1 10 11 01 00 CD AB

Consider the simplified expression may not be unique F = BD+B'D'+CD+AD = BD+B'D'+CD+AB = BD+B'D'+B'C+AD = BD+B'D'+B'C+AB'

3-4 Five-Variable Map Map for more than four variables becomes complicated five-variable map: two four-variable map (one on the top of the other)

Table 3.1 shows the relationship between the number of adjacent squares and the number of literals in the term.

Example 3-7 F = S(0,2,4,6,9,13,21,23,25,29,31) F = A'B'E'+BD'E+ACE

Another Map for Example 3-7 F = S(0,2,4,6,9,13,21,23,25,29,31) ABC DE 000 001 011 010 110 111 101 100 00 1 01 11 10

 Another Map for Example 3-7

3-5 Product of Sums Simplification Approach #1 Simplified F' in the form of sum of products Apply DeMorgan's theorem F = (F')' F': sum of products => F: product of sums Approach #2: duality 將基本定理之OR與AND運算互換 , 把0變成1 , 1變成0,即可得出對偶式(dual)。 combinations of maxterms (it was minterms) M0M1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C

Example 3-8 F = S(0,1,2,5,8,9,10) F' = AB+CD+BD' Apply DeMorgan's theorem; F=(A'+B')(C'+D')(B'+D) Or think in terms of maxterms

Gate implementation of the function of Example 3-8

Consider the function defined in Table 3.2. In sum-of-minterm: In sum-of-maxterm: Taking the complement of F

Consider the function defined in Table 3.2. Combine the 1’s: Combine the 0’s :

3-6 Don't-Care Conditions The value of a function is not specified for certain combinations of variables BCD; 1010-1111: don't care The don't care conditions can be utilized in logic minimization can be implemented as 0 or 1 Example 3-9 F (w,x,y,z) = S(1,3,7,11,15) d(w,x,y,z) = S(0,2,5)

Also apply to products of sum F = yz + w'x'; F = yz + w'z F = S(0,1,2,3,7,11,15) ; F = S(1,3,5,7,11,15) either expression is acceptable Also apply to products of sum

3-7 NAND and NOR Implementation NAND gate is a universal gate can implement any digital system

NAND and NOR Implementation Two graphic symbols for a NAND gate 對等邏輯 對等邏輯在邏輯電路的分析化簡上相當好用,它可以用來消去許多的迪莫根運算,

Two-level Implementation The implementation of Boolean function with NAND gates requires that the functions be in sum of products Example: F = AB+CD F = ((AB)' (CD)' )' =AB+CD Fig. 3-20 Three ways to implement F = AB + CD

Two-level Implementation (cont.) Example 3-10

Two-level Implementation (cont.) The procedure Simplify the function and express it in sum of products form. Draw a NAND gate for each product term; the inputs to each NAND gate are the literals of the term Draw a single NAND gate / invert-OR gate for the second sum term. A term with a single literal requires an inverter in the first level. If the single literal is complemented, it can be connected directly to an input of the second-level NAND gate.

Multilevel NAND Circuits AND-OR logic => NAND-NAND logic The general procedure for converting a multilevel AND-OR diagram into an all-NAND diagram Convert all AND gates to NAND gates with AND-inverter graphic symbols. Convert all OR gates to NAND gates with inverter-OR graphic symbols. Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an invert or complement the input literal. (1)將邏輯函數化成積之和(SOP)最簡函數。 (2)將此SOP取兩次補數,再以迪莫根定理化簡,使其OR運算全部變成以” ∙”(AND)為連接的運算。

Multilevel NAND Circuits Example: F = A(CD + B) + BC Fig. 3.22 Implementing F = A(CD + B) + BC

Multilevel NAND Circuits Fig. 3.23 Implementing F = (AB +AB)(C+ D)

Example Problem 3.16 Simplify the following functions, and implement them with two-level NAND gate circuits: (a) F(A,B,C,D)=A’B’C+AC’+ACD+ACD’+A’B’D’ (b) F(A,B,C)=(A’+B’+C’)(A’+B’)(A’+C’)

Multilevel NAND Circuits Simply the Multilevel NAND Circuits

NOR Implementation NOR function is the dual of NAND function The NOR gate is also universal The function be simplified into product-of-sum form. The simplified POS express is obtained from the map by combing the 0’s and complementing. The transformation from the OR-AND diagram to a NOR diagram Changing the OR gates to NOR gates with OR-invert graphic symbols Changing the AND gate to a NOR gate with an invert-AND graphic symbol. A single literal term going into the second-level gate must be complemented. 方法: (1)將邏輯函數化成和之積(POS)最簡函數。 (2)將此POS取兩次補數,再以迪莫根定理化簡,使其AND運算全部變成以”+”(OR)為連接的運算。

NOR Implementation Logic operations with NOR gates

Two graphic symbols for a NOR gate Example: F = (A + B)(C + D)E Fig. 3.26 Implementing F = (A + B)(C + D)E

NOR Implementation F=(AB+E)(C+D)

NOR Implementation Example: F = (AB +AB)(C + D) Fig. 3.27 Implementing F = (AB +AB)(C + D) with NOR gates

Example Problems 3.19 Simply the following functions, and implement them with two-level NOR gate circuit: (a) F=wx’+y’z’+w’yz’ (b) F(x,y,z)=[(x+y)(x’+z)]’

3-8 Other Two-level Implementations Wired logic a wire connection between the outputs of two gates open-collector TTL NAND gates: wired-AND logic the NOR output of ECL gates: wired-OR logic AND-OR-INVERT function OR-AND-INVERT function

Nondegenerate Forms Consider four types of gates: AND, OR, NAND, and NOR. 16 possible combinations of two-level forms eight of them: degenerate forms = a single operation The eight nondegenerate forms AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND, OR-AND, AND-OR AND-OR and NAND-NAND = sum of products OR-AND and NOR-NOR = product of sums NOR-OR, NAND-AND, OR-AND, AND-OR = ?

AND-OR-Invert Implementation AND-OR-INVERT (AOI) Implementation NAND-AND = AND-NOR = AOI F = (AB+CD+E)' F' = AB+CD+E (sum of products) simplify F' in sum of products

Other Two-level Implementations (cont.) OR-AND-INVERT (OAI) Implementation OR-NAND = NOR-OR = OAI F = ((A+B)(C+D)E)' F' = (A+B)(C+D)E (product of sums) simplified F' in products of sum

Tabular Summary and Examples F' = x'y+xy'+z (F': sum of products) F = (x'y+xy'+z)' (F: AOI implementation) F = x'y'z' + xyz‘ (F: sum of products) F' = (x+y+z)(x'+y'+z) (F': product of sums) F = ((x+y+z)(x'+y'+z))' (F: OAI)

Tabular Summary and Examples

3-9 Exclusive-OR Function Exclusive-OR (XOR): XOR is equal to 1 if only x and y differ in value. xÅy = xy'+x'y Exclusive-NOR (XNOR): XNOR is equal to 1 if both x and y are equal. (xÅy)' = xy + x'y' Some identities xÅ0 = x xÅ1 = x' xÅx = 0 xÅx' = 1 xÅy' = (xÅy)' x'Åy = (xÅy)' Commutative and associative AÅB = BÅA (AÅB) ÅC = AÅ (BÅC) = AÅBÅC

Exclusive-OR Function (cont.) Implementations (x'+y')x + (x'+y')y = xy'+x'y = xÅy

Exclusive-OR Function (cont.) Odd function AÅBÅC = (AB'+A'B)C' +(AB+A'B')C = AB'C'+A'BC'+ABC+A'B'C = S(1,2,4,7) The three-variable exclusive-OR function is equal to 1 if only one variable is equal to 1, or if all three variables are equal to 1. For more variables, an odd number of variables be equal to 1.

Exclusive-OR Function (cont.) The four minterms of the function are a unit distance apart from each other. The odd function is identified from the four minterms whose binary values have an odd number of 1’s. The complement of an odd function is an even function. The three-variable even function is equal to 1 when an even number of its variables is equal to 1. Logic diagram of odd and even functions

Exclusive-OR Function (cont.) Four-variable Exclusive-OR function AÅBÅCÅD = (AB’+A’B)Å(CD’+C’D) = (AB’+A’B)(CD+C’D’)+(AB+A’B’)(CD’+C’D)

Exclusive-OR Function (cont.) Parity Generation and Checking XOR functions are very useful in error detection and correction codes. Parity generator A circuit that generates the parity bit in the transmitter. a parity bit: P = xÅyÅz Parity checker A circuit that checks the parity bit in the receiver. parity check: C = xÅyÅzÅP C=1: an odd number of data bit error C=0: correct or an ever # of data bit error

Exclusive-OR Function (cont.)

Exclusive-OR Function (cont.)

3.10 Hardware Description Language (HDL) HDL is a computer-based language that describe the design of digital systems in a textual form. Used for describing hardware structure and the function/behavior of logic circuits. HDL are used in several major steps in the design flow of an integrated circuit Design entry Functional simulation or verification Logic synthesis Timing verification Fault simulation

Hardware Description Language (HDL) (cont.) Design entry Creates an HDL-based description of the functionality that is to be implemented in hardware. The description can be in a variety of forms: Boolean logic equation, truth tables, a netlist of interconnected gates, an abstract behavioroal model. Logic simulation Displays the behavior of a digital system through the use of a computer. A simulator interprets the HDL description and produces readable output. Logic synthesis The process of deriving a list of physical components and their interconnections from the model of a digital system described in an HDL. Logic synthesis is similar to compiling a program in a conventional high-level language. Logic synthesis produces a database describing the elements and structure of a circuit.

Hardware Description Language (HDL) (cont.) Timing verification Confirms that the fabricated integrated circuit will operate at a specified speed. Propagation delays ultimately limit the speed at which a circuit can operate. Timing verification checks each signal path to verify that it is not compromised by propagation delay. Fault simulation Compares the behavior of an ideal circuit with the behavior of a circuit that contains a process-induced flaw. Fault simulation is used to identify input stimuli that can be used to reveal the difference between the faulty circuit and the fault-free circuit.

A Top-Down Design Flow 第三版內容,參考用! Specification RTL design and Simulation Logic Synthesis Gate Level Simulation ASIC Layout FPGA Implementation

Module Declaration Examples of keywords: module, end-module, input, output, wire, and, or, and not. Any text between two forward slashes (//) and the end of the line is interpreted as a comment. Verilog is case sensitive. A module is the fundamental descriptive unit in the Verilog language Fig. 3-37 Circuit to demonstrate an HDL

HDL Example 3.1 HDL description for circuit shown in Fig. 3.37

Gate Displays Example: timescale directive ‘timescale 1 ns/100ps 30ns

HDL Example 3.2 Gate-level description with propagation delays for circuit shown in Fig. 3.37

HDL Example 3.3 Test bench for simulating the circuit with delay

Simulation output for HDL Example 3.3

Boolean Expression HDL Example 3.4  Boolean expression for the circuit of Fig. 3.37  Boolean expression: HDL Example 3.4

HDL Example 3.4

User-Defined Primitives  General rules:  Declaration: Implementing the hardware in Fig. 3.39

HDL Example 3.5

HDL Example 3.5 (Continued)

Fig. 3.39 Schematic for circuit with_UDP_02467