The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

Slides:



Advertisements
Similar presentations
Oct.10, 2007EAMA7 Japanese Space Activity on Exoplanets (JAXAs prespective) & Pathways to Habitable Planets September 16, 2009 Takao Nakagawa (ISAS/JAXA)
Advertisements

OTA Status Report K.Ichimoto/Y.Suematsu, NAOJ Following institutes/companies are in collaboration. J-side:ISAS (Institute of Space and Astronautical Science)
Meeting of the Blue Dot Team, UCL, London, sept Single Aperture Concepts.
Debris Disk Science with GMT Inseok Song, University of Georgia for “Opening New Frontiers with the Giant Magellan Telescope” in Oct 2010 Zodiacal light:
Halftoning for High-Contrast Imaging P. Martinez 1 C. Dorrer 2, E. Aller Carpentier 1, M. Kasper 1, A. Boccaletti 3, and K. Dohlen 4 1 European Southern.
Géraldine Guerri Post-doc CSL
1 Key Types Introduction Michelson Summer School on High-Contrast Imaging Caltech, Pasadena July 2004 Wesley A. Traub Harvard-Smithsonian Center.
Pupil Remapping for high dynamical range imaging Olivier Guyon Subaru Telescope National Astronomical Observatory of Japan Hilo, HI Michelson.
TIGER The TIGER Instrument Overview Phil Hinz - PI July 13, 2010.
Amplitude Control: Closing the Loop in a Zero Path Length Difference Michelson Interferometer Michael G. Littman, Michael Carr , Laurent Pueyo, Jeremy.
Phase and Amplitude Control Ability using Spatial Light Modulators and Zero Path Length Difference Michelson Interferometer Michael G. Littman, Michael.
An Optimized Pupil Coronagraph: A New Way To Observe Extrasolar Planets This work was performed for the Jet Propulsion Laboratory, California Institute.
1 NGAO Science Instrument Reuse Part 1: NIRC2 NGAO IWG December 12, 2006.
Imaging Planets in the Thermal Infrared Phil Hinz University of Arizona Outline: Observations of HR 8799 and Fomalhaut Survey of FGK stars in the thermal.
Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope.
Space Infrared Astronomy in Japan 2009 UN BSS & IHY Workshop, September 22, 2009 MATSUMOTO, Toshio Seoul National University, ISAS/JAXA.
Apodized Filter IWA (λ/D)2~4 OWA (λ/D)13 Contrast ~10 -7 Throughput (%)41.4% Shape of the filter and the simulated coronagraphic point spread function.
Exoplanet Exploration Program Starshade and Coronagraph Technology Gaps and Paths to Close Them Peter Lawson and Nick Siegler Jet Propulsion Laboratory,
‘OHANA Towards kilometric infrared arrays Visions for InfraRed Astronomy Paris March 21, 2006 Guy Perrin (+ many others including Pierre)
Dean C. Hines [Deputy Principle Investigator] Exoplanetary Circumstellar Environments and Disk Explorer (EXCEDE): A new space telescope proposed for NASA’s.
Near Infrared Spectro-polarimeter (NIRSP) Conceptual Design Don Mickey Jeff Kuhn Haosheng Lin.
1 A. Boccaletti Pasadena, Sept th Imaging EGPs with JWST/MIRI and VLT/SPHERE valuable experiences for TPF-C A. Boccaletti, P. Baudoz D. Rouan + coronagraphic.
Exoplanet Imaging with the PIAA Coronagraph: Latest Laboratory Results from NASA Ames Rus Belikov, Michael Connelley, Tom Greene, Dana Lynch, Mark McKelvey,
STDT: S. Seager (Chair, MIT), W. Cash (Colorado), S. Domagal- Goldman (NASA GSFC), N. J. Kasdin (Princeton), M. Kuchner (NASA GSFC), A. Roberge (NASA GSFC),
Optical diagnostics for beam halo (I) Coronagraph (II) OTR halo monitor for J-PARC T. Mitsuhashi, KEK.
Closing Remarks (Summary of Conference Highlights) M. Shao JPL/Caltech.
Lyot Stop Focal Plane Mask OAP3 Out of plane spherical mirror.
SCI (SPICA coronagraph instrument) Keigo Enya & SCI team.
From NAOS to the future SPHERE Extreme AO system T. Fusco 1, G. Rousset 1,2, J.-L. Beuzit 3, D. Mouillet 3, A.-M. Lagrange 3, P. Puget 2 and many others.
Upgrade plan of the MOA 1.8-m telescope F. Abe MOA collaboration 19 Jan. 2009, 13th Microlensing Paris.
Modern Universe Space Telescope Visions 2003 Proposal Dennis Ebbets Ball Aerospace UV Optical Space Telescope Workshop STScI February 26, 2004.
ASTRO-F Survey as an Input Catalogue for FIRST Takao Nakagawa (ISAS, Japan) & ASTRO-F Team.
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
High Contrast Imaging with Focal Plane Wavefront Sensing and PIAA for Subaru Telescopes Olivier Guyon Basile Gallet
Eric Pantin, Jean Schneider, A. Boccaletti, P. Baudoz, R. Galicher, R. Gratton, D. Stam et al. Polarimetry and spectral imaging of mature Jupiter and super-Earth.
ASTR 3010 Lecture 18 Textbook N/A
Molecules in the atmosphere of extrasolar planets, Paris, nov Direct Imaging of Extrasolar Planets Overview of Ground & Space Programs Anthony.
Hubble Space Telescope Coronagraphs John Krist JPL.
The Solar Orbiter mission Solar Orbiter represents a new approach to solar studies. –A huge increase in discovery space The payload consists of a suite.
1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.
First On-sky Test of an Optical Vortex Coronagraph (OVC) Mary Anne Peters Undergraduate research advisor : Laird M. Close Matt Rademacher, Tom Stalcup.
Calibration of the Polarization Property of SOT K.Ichimoto, Y.Suematsu, T.Shimizu, Y.Katsukawa, M.Noguchi, M.Nakagiri, M.Miyashita, S.Tsuneta (National.
イメージスライサー型可視光 面分光ユニットの開発 Development of an integral field unit (IFU) with an image slicer Shinobu Ozaki, Satoshi Miyazaki, Takuya Yamashita, Takashi Hattori,
20 OCT 2003SOLAR ORBITER MEETING1 Optical Design Activities at RAL Kevin Middleton Optical Systems Group Space Science & Technology Dep’t. Rutherford Appleton.
EUV Maskless Lithography J. Vac. Sci. Technol. B 30, (2012); 9/25/20121K. Johnson
JTPF Japanese Terrestrial Planet Finder JTPF Japanese Terrestrial Planet Finder M. Tamura (NAOJ) JTPF Working Group TPF-C coronagraph WS :15-15:30.
Poster 67. A PHOTOMETRIC TRANSIT SEARCH FOR PLANETS AROUND COOL STARS FROM THE ITALIAN ALPS: RESULTS FROM A FEASIBILITY STUDY A. Bernagozzi (1), E. Bertolini.
Presenter: Alexander Rodack Mentor: Dr. Olivier Guyon Colleagues and Advisors: Dr. Johanan Codona, Kelsey Miller, Justin Knight Project Funded by NASA.
Optical principles of diffraction focussing, Preparing the way to space borne Fresnel imagers NiceSeptember 23-25, Fresnel Imagers Observatoire.
Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space Peter L. Bender JILA, University of Colorado Boulder.
Redundant Array + Corrugated Wavefront Non-Redundant Array + Spatially Filtered Wavefront Single-mode fibers Lenslet array Flat wavefront after calibration.
On the Evaluation of Optical Performace of Observing Instruments Y. Suematsu (National Astronomical Observatory of Japan) ABSTRACT: It is useful to represent.
The Self-Coherent Camera: a focal plane wavefront sensor for EPICS
HiCIAO High Contrast Instrument for the Subaru Next Generation Adaptive Optics M. Tamura 1, R. Suzuki 2, K. Hodapp 2, L. Abe 1, H. Takami 3, O. Guyon 3,
Development of Coronagraphs for Exoplanet Detection with SPHERE - direct detection and characterization of Extrasolar Giant Planets in the NIR among nearby.
The High Contrast Performance Of An Optical Vortex Coronagraph By Dr. David M. Palacios Jet Propulsion Laboratory California Institute of Technology.
V - 1 V. System Technology for Large Space Telescopes Session Chair: Juan A. Roman.
Date of download: 5/29/2016 Copyright © 2016 SPIE. All rights reserved. Drawing of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA)
Lessons from CLIO Masatake Ohashi (ICRR, The University of TOKYO) and CLIO collaborators GWADW2012 Hawaii 2012/5/16.
Page 1 Lecture 16 Extreme Adaptive Optics: Exoplanets and Protoplanetary Disks Claire Max AY 289 March 7, 2016 Based in part on slides from Bruce Macintosh.
Observability of YSOs with the WISE and AKARI infrared observatories Sarolta Zahorecz Eötvös University, Budapest PhD student, 3. year Thesis advisor:
Vortex Coronagraphy G. Serabyn Jet Propulsion Laboratory,
Smart co-phasing system for segmented mirror telescopes SPIE: Juan F Simar* a, Yvan Stockman a, Jean Surdej b a Centre Spatial de Liège, LIEGE.
Beam Measurement Characterization and Optics Tolerance Analysis of a 900 GHz HEB receiver for the ASTE telescope Alvaro Gonzalez, K. Kaneko, Y. Uzawa.
All Sky Infrared Telescope, AKARI (ASTRO-F)
Onboard Instruments of ASTROSAT
Current Status in Japan relating to ExoPlanet Science
M. Beaulieu, L. Abe, P. Martinez, P. Baudoz C. Gouvret
He Sun Advisor: N. Jeremy Kasdin Mechanical and Aerospace Engineering
Modern Observational/Instrumentation Techniques Astronomy 500
Presentation transcript:

The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND THE SPICA W ORKING G ROUP 1 National Astronomical Observatory, Mitaka, Japan 2 Institute of Space and Astronautical Sciences, Sagamihara, Japan 3 Kobe University, Japan 4 Subaru telescope/NAOJ, Hilo, Hawaii TPF Workshop, Pasadena, Sept. 28 th -29 th to:

ABE Lyu, NAOJ, TPF-WS, September 28 th The SPICA Mission in Brief SPICA Coronagraph Requirements Laboratory Demonstration

3 S PICA M ISSION  mIR to submm astrophysics  Complementary to >15mic  Coronagraphic mode (proposed by Tamura et al.)  Direct observation of outer self- luminous planets (20~100+ UA orbits)  Goal contrast >10 -6 within the exploration area  Benefit from monolithic pupil SP ace I nfrared telescope for C osmology and A strophysics  Succes of Akari (Astro-F) launch on Feb. 22nd 2006

4 T HE S PICA T ELESCOPE Telescope diameter Launch date Orbit Wavelength coverage Cryogenic active cooling (warm launch) Pointing accuracy Tip-tilt jitter control Wavefront control 3.5 m (SiC) ~2015 (HIIA rocket) Lagrange L µm 4.5K 0.3” 30mas TBD (corona. related) SPICA telescope concept

5 S PICA C ORONAGRAPH R EQUIREMENTS  The mIR wavelengths constrains very high angular regions  need for smallest possible IWA coronagraphs  SPICA tip-tilt jitter is important (  vibrations of cryo-coolers  coronagraph poorly sensitive to TT  SPICA telescope pupil geometry (15~25% central obscuration)  Candidate coronagraphs  Binary pupil masks (Kasdin/Vanderbei) – baseline Checkerboard  PIAA (Guyon)  (Multi-stage) apodized pupil Lyot coronagraph (Aime & Soummer)

6  Checkerboard Masks Pros/Cons  High IWA (>5 /D, because of CO)  Low throughput  Discovery space  Low temperature (need 4.5K)  Optical environment complexity  Sensitivity to Tip-tilt  Chromaticity  Aberrations (can be made standalone ) C HECKERBOARD M ASKS: A T RADEOFF  Tradeoff between complexity/performance Good baseline/backup solution for SPICA

Asymmetrical checkerboard mask (Tanaka et al.) 7 C HECKERBOARD M ASKS: A T RADEOFF  Study of asymmetrical configurations (Tanaka et al. PASJ, 58, 627, 2006)  lower IWA, extended search area close to axes  Study of OWA vs spatial frequency AO correction range Tanaka et al. 2006, submitted

8 L ABORATORY E XPERIMENT (Enya et al., to appear in A&A)  Conducted in ISAS  Environment  Dark room  Air flow (on/off)  No temperature regulation  Setup  Off-the-shelf optics ~ PtV, AR coating  No AO system  Beam diameter: 2mm (masks side 1.41mm) / F# ~ 600  BITRAN cooled CCD camera (2048×2048) (10  m diameter) Enya et al. astro-ph/

9 M ANUFACTURING  Manufactured at the Advanced Institute of Science and Technology (AIST, Japan)  Electron beam patterning and lift-off process (100nm aluminium)  BK7 substrates  1.41 mm side square (2mm diameter pupil)

10 40µm M ANUFACTURING Designed mask  Mask1: IWA=7 / OWA=16 / Design Cont.=10 -7 Checkerboard Mask Prototype  Fabrication process  Performance Modeling Manufactured by AIST company (Japan – Release date sept. 27 th 2005)

11 M ANUFACTURING Mask2 Mask defects  No central obstruction design  IWA=3 / OWA=30 / Design Cont.=10 -7

12 P ERFORMANCE (I)  Mask1: IWA= 7 / OWA= 16 / Design Cont.= / Throughput= 16% 10 /D with “ photon blocker ”

13 P ERFORMANCE (II)  Mask2: IWA= 3 / OWA= 30 / Design Cont.= / Throughput= 24% 10 /D

14 P ERFORMANCE (III) (Profiles along the diagonal direction) Average contrast  level (speckles) Average contrast  level (speckles)

15 A NALYSIS Theoretical pattern From optical aberrations (from beam line, not from mask) 10 /D Enya et al. astro-ph/

16  Checkerboard Masks  Submitted paper on WF correction requirements (Tanaka et al.)  Next planned mask design  Limit of optics  Cryogenic AO tests  6×6 channels prototype BMC mirror (modified substrate)  Other investigations  Two-Mirror Apodization (collaboration with O. Guyon)  PIAAC  APLC designs O NGOING & F UTURE PLANS