Principles of Reactivity: Electron Transfer Reactions

Slides:



Advertisements
Similar presentations
ELECTROCHEMISTRY Chapter 20
Advertisements

1 © 2006 Brooks/Cole - Thomson Balancing Equations for Redox Reactions Some redox reactions have equations that must be balanced by special techniques.
Principles of Reactivity: Electron Transfer Reactions
Oxidation-Reduction (Redox) Reactions
ELECTROCHEMISTRY Chapter 21 Electric automobile Copyright © 1999 by Harcourt Brace & Company All rights reserved. Requests for permission to make copies.
Prentice Hall © 2003Chapter 20 Zn added to HCl yields the spontaneous reaction Zn(s) + 2H + (aq)  Zn 2+ (aq) + H 2 (g). The oxidation number of Zn has.
Electrochemistry Use of spontaneous chemical reactions to produce electricity; use of electricity to drive non-spontaneous reactions. Zn(s) + Cu 2+ (aq)
Chapter 20 Electrochemistry
1 ELECTROCHEMICAL CELLS Chapter 20 : D8 C Half-Cells and Cell Potentials > 2 Copyright © Pearson Education, Inc., or its affiliates. All Rights.
Electrochemistry Chapter and 4.8 Chapter and 19.8.
1 ELECTROCHEMISTRY Chapter 18 SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print setup.
Chapter 18 Electrochemistry
Mark S. Cracolice Edward I. Peters Mark S. Cracolice The University of Montana Chapter 19 Oxidation–Reduction (Redox)
Electrochemistry Chapter 4.4 and Chapter 20. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another.
1 Balancing Redox Reactions Chapter 20: Day 2. 2 Review of Terminology for Redox Reactions OXIDATION—loss of electron(s) by a species; increase in oxidation.
ELECTROCHEMISTRY REDOX REVISITED! 24-Nov-97Electrochemistry (Ch. 21) & Phosphorus and Sulfur (ch 22)1.
Electrochemistry Chapter 21. Electrochemistry and Redox Oxidation-reduction:“Redox” Electrochemistry: study of the interchange between chemical change.
Chapter 20 - Electron Transfer Reactions Objectives: 1. Carry out balancing of redox reactions in acidic or basic solutions; 2. Recall the parts of a basic.
ELECTROCHEMISTRY To play the movies and simulations included, view the presentation in Slide Show Mode.
Chapter 18 Electrochemistry. 2 GOALS Review: oxidation states oxidation/reduction oxidizing/reducing agent ch. 17 Balancing redox reactions Voltaic cells.
ELECTROCHEMISTRY To play the movies and simulations included, view the presentation in Slide Show Mode.
Electrochemistry Chapter 19.
1 © 2006 Brooks/Cole - Thomson Chemistry and Chemical Reactivity 6th Edition John C. Kotz Paul M. Treichel Gabriela C. Weaver CHAPTER 20 Principles of.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Chapter 20 – Redox Reactions One of the earliest recognized chemical reactions were with oxygen. Some substances would combine with oxygen, and some would.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
CHEM 180/181Chapter 20 Dana Roberts Chapters covered: 18 and 20 Notes available online or in Resource Room (1 st floor). To print.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Electron Transfer Reactions: CH 19: Oxidation-reduction or redox reactions. Results in generation of an electric current (electricity) or caused by.
1 ELECTROCHEMISTRY Chapter TRANSFER REACTIONS Atom/Group transfer HCl + H 2 O ---> Cl - + H 3 O + Electron transfer Cu(s) + 2 Ag + (aq) ---> Cu.
Chapter 20 Electrochemistry and Oxidation-Reduction.
Electrochemisty Electron Transfer Reaction Section 20.1.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
1 B.8- B. 9 In which you will learn about: redox definitions assigning oxidation numbers half reactions balancing redox equations.
1 Focus 4: Oxidation-reduction reactions as source of energy SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead.
17-Nov-97Electrochemistry (Ch. 21)1 ELECTROCHEMISTRY Chapter 21 Electric automobile redox reactions electrochemical cells electrode processes construction.
Oxidation & Reduction Electrochemistry BLB 11 th Chapters 4, 20.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry. Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Electron transfer reactions are.
1 Electrochemistry Chapter 19 2 Electron transfer reactions are oxidation- reduction or redox reactions. Electron transfer reactions result in the generation.
a.k.a Electrochemistry a.k.a. Oxidation-Reduction Redox!
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 CELL POTENTIAL, E Electrons are “driven” from anode to cathode by an electromotive force or emf.Electrons are “driven” from anode to cathode by an electromotive.
Electrochemistry Chapter 18 Electrochemistry. Electrochemistry Electrochemical Reactions In electrochemical reactions, electrons are transferred from.
Chemical Reactions Unit Learning Goal 4: Examine the Law of Conservation of Energy Learning Goal 5: Describe how electrochemical energy can be produced.
Redox Reactions: HALF REACTIONS
Steps in Balancing Redox 1.Determine the oxidation number of all elements in the compounds 2. Identify which species have undergone oxidation and reduction.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Chapter 20: Electrochemistry Chemistry 1062: Principles of Chemistry II Andy Aspaas, Instructor.
Electrochemistry. What is “electrochemistry”? The area of chemistry concerned with the interconversion of chemical and electrical energy. Energy released.
Chapter 20 Electrochemistry. Oxidation States electron bookkeeping * NOT really the charge on the species but a way of describing chemical behavior. Oxidation:
CHAPTER 17 ELECTROCHEMISTRY. Oxidation and Reduction (Redox) Electrons are transferred Spontaneous redox rxns can transfer energy Electrons (electricity)
Electrochemistry Chapter 20. oxidation: lose e- -increase oxidation number reduction: gain e- -reduces oxidation number LEO goes GER Oxidation-Reduction.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
1 © 2009 Brooks/Cole - Cengage ELECTROCHEMISTRY Chapter
ELECTROCHEMISTRY Chapter 9
Chapter 20 Electrochemistry
ELECTROCHEMISTRY Chapter 18
Chapter 20 Electrochemistry
Balancing Redox Reactions Chapter 20: Day 2 and 3
Presentation transcript:

Principles of Reactivity: Electron Transfer Reactions Chemistry and Chemical Reactivity 6th Edition John C. Kotz Paul M. Treichel Gabriela C. Weaver Principles of Reactivity: Electron Transfer Reactions Lectures written by John Kotz © 2006 Brooks/Cole Thomson

ELECTROCHEMISTRY Chapter 19

TRANSFER REACTIONS Atom/Group transfer Electron transfer HCl + H2O ---> Cl- + H3O+ Electron transfer Cu(s) + 2 Ag+(aq) ---> Cu2+(aq) + 2 Ag(s)

Electron Transfer Reactions Electron transfer reactions are oxidation-reduction or redox reactions. Redox reactions can result in the generation of an electric current or be caused by imposing an electric current. Therefore, this field of chemistry is often called ELECTROCHEMISTRY.

Review of Terminology for Redox Reactions OXIDATION—loss of electron(s) by a species; increase in oxidation number. REDUCTION—gain of electron(s); decrease in oxidation number. OXIDIZING AGENT—electron acceptor; species is reduced. REDUCING AGENT—electron donor; species is oxidized.

OXIDATION-REDUCTION REACTIONS Direct Redox Reaction Oxidizing and reducing agents in direct contact. Cu(s) + 2 Ag+(aq) ---> Cu2+(aq) + 2 Ag(s)

Cu + Ag+ --give--> Cu2+ + Ag Balancing Equations Cu + Ag+ --give--> Cu2+ + Ag

Balancing Equations Step 1: Divide the reaction into half-reactions, one for oxidation and the other for reduction. Ox Cu ---> Cu2+ Red Ag+ ---> Ag Step 2: Balance each for mass. Already done in this case. Step 3: Balance each half-reaction for charge by adding electrons. Ox Cu ---> Cu2+ + 2e- Red Ag+ + e- ---> Ag

Balancing Equations Step 4: Multiply each half-reaction by a factor so that the reducing agent supplies as many electrons as the oxidizing agent requires. Reducing agent Cu ---> Cu2+ + 2e- Oxidizing agent 2 Ag+ + 2 e- ---> 2 Ag Step 5: Add half-reactions to give the overall equation. Cu + 2 Ag+ ---> Cu2+ + 2Ag The equation is now balanced for both charge and mass.

Balancing Equations for Redox Reactions Some redox reactions have equations that must be balanced by special techniques. MnO4- + 5 Fe2+ + 8 H+---> Mn2+ + 5 Fe3+ + 4 H2O Mn = +7 Fe = +2 Mn = +2 Fe = +3

Reduction of VO2+ with Zn

Add H2O on O-deficient side and add H+ on other side for H-balance. Balancing Equations Balance the following in acid solution— VO2+ + Zn ---> VO2+ + Zn2+ Step 1: Write the half-reactions Ox Zn ---> Zn2+ Red VO2+ ---> VO2+ Step 2: Balance each half-reaction for mass. Red 2 H+ + VO2+ ---> VO2+ + H2O Add H2O on O-deficient side and add H+ on other side for H-balance.

Balancing Equations Step 3: Balance half-reactions for charge. Ox Zn ---> Zn2+ + 2e- Red e- + 2 H+ + VO2+ ---> VO2+ + H2O Step 4: Multiply by an appropriate factor. Red 2e- + 4 H+ + 2 VO2+ ---> 2 VO2+ + 2 H2O Step 5: Add balanced half-reactions Zn + 4 H+ + 2 VO2+ ---> Zn2+ + 2 VO2+ + 2 H2O

Tips on Balancing Equations Never add O2, O atoms, or O2- to balance oxygen ONLY add H2O or OH-. Never add H2 or H atoms to balance hydrogen ONLY add H+ or H2O. Be sure to write the correct charges on all the ions. Check your work at the end to make sure mass and charge are balanced. PRACTICE!

Potential Ladder for Reduction Half-Reactions Figure 20.14 Best oxidizing agents Best reducing agents Potential Ladder for Reduction Half-Reactions

TABLE OF STANDARD REDUCTION POTENTIALS oxidizing ability of ion E o (V) Cu 2+ + 2e- Cu +0.34 2 H + + 2e- H 0.00 Zn + 2e- Zn -0.76 reducing ability of element 2

Using Standard Potentials, Eo Table 20.1 Which is the best oxidizing agent: O2, H2O2, or Cl2? _________________ Which is the best reducing agent: Hg, Al, or Sn? ____________________

Standard Redox Potentials, Eo Any substance on the right will reduce any substance higher than it on the left. Zn can reduce H+ and Cu2+. H2 can reduce Cu2+ but not Zn2+ Cu cannot reduce H+ or Zn2+.

Standard Redox Potentials, Eo Ox. agent Cu 2+ + 2e- --> Cu +0.34 + 2 H + 2e- --> H2 0.00 Zn + 2e- --> Zn -0.76 Red. agent Any substance on the right will reduce any substance higher than it on the left. Northwest-southeast rule: product-favored reactions occur between reducing agent at southeast corner oxidizing agent at northwest corner

2 H+(aq, 1 M) + 2e- <----> H2(g, 1 atm) CELL POTENTIALS, Eo Can’t measure 1/2 reaction Eo directly. Therefore, measure it relative to a STANDARD HYDROGEN CELL 2 H+(aq, 1 M) + 2e- <----> H2(g, 1 atm) Eo = 0.0 V

Calculating Cell Voltage Balanced half-reactions can be added together to get overall, balanced equation. Zn(s) ---> Zn2+(aq) + 2e- Cu2+(aq) + 2e- ---> Cu(s) -------------------------------------------- Cu2+(aq) + Zn(s) ---> Zn2+(aq) + Cu(s) If we know Eo for each half-reaction, we could get Eo for net reaction.

Uses of Eo Values Organize half-reactions by relative ability to act as oxidizing agents Use this to predict direction of redox reactions and cell potentials. Cu2+(aq) + 2e- ---> Cu(s) Eo = +0.34 V Zn2+(aq) + 2e- ---> Zn(s) Eo = –0.76 V Note that when a reaction is reversed the sign of E˚ is reversed!

Using Standard Potentials, Eo In which direction do the following reactions go? Cu(s) + 2 Ag+(aq) ---> Cu2+(aq) + 2 Ag(s) Goes right as written 2 Fe2+(aq) + Sn2+(aq) ---> 2 Fe3+(aq) + Sn(s) Goes LEFT opposite to direction written What is Eonet for the overall reaction?

Eo and Thermodynamics ∆Go = -nFEo Eo is related to ∆Go, the free energy change for the reaction. ∆G˚ is proportional to –nE˚ ∆Go = -nFEo where F = Faraday constant = 9.6485 x 104 J/V•mol of e- (or 9.6485 x 104 coulombs/mol) and n is the number of moles of electrons transferred

Eo and ∆Go ∆Go = - n F Eo For a product-favored reaction Reactants ----> Products ∆Go < 0 and so Eo > 0 Eo is positive For a reactant-favored reaction Reactants <---- Products ∆Go > 0 and so Eo < 0 Eo is negative

Eo and Equilibrium Constant DGo = -RT ln K DGo = -nFEo