P i x e l 2 0 0 2 - C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector1 The ATLAS Pixel Detector Pixel 2002 Workshop M. Garcia-Sciveres.

Slides:



Advertisements
Similar presentations
H1 SILICON DETECTORS PRESENT STATUS By Wolfgang Lange, DESY Zeuthen.
Advertisements

The ATLAS Pixel Detector
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
Silicon Preshower for the CMS: BARC Participation
Workshop on Silicon Detector Systems, April at GSI Darmstadt 1 STAR silicon tracking detectors SVT and SSD.
1 Status of the CMS Pixel project Lorenzo Uplegger RD07 Florence 28 June 2007.
Richard Kass IEEE NSS 11/14/ Richard Kass Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector K.E. Arms, K.K. Gan, M.
LHC SPS PS. 46 m 22 m A Toroidal LHC ApparatuS - ATLAS As large as the CERN main bulding.
For high fluence, good S/N ratio thanks to: Single strip leakage current I leak  95nA at T  -5C Interstrip capacitance  3pF SVX4 chip 10 modules fully.
Pixel Sensors for ATLAS Sally Seidel University of New Mexico Pixel ‘98 8 May 1998.
The LHCb Inner Tracker Marc-Olivier Bettler SPS annual meeting Zürich 21 February 2007.
Description of BTeV detector Jianchun Wang Syracuse University Representing The BTeV Collaboration DPF 2000 Aug , 2000 Columbus, Ohio.
Module Production for The ATLAS Silicon Tracker (SCT) The SCT requirements: Hermetic lightweight tracker. 4 space-points detection up to pseudo rapidity.
Sensors for CDF RunIIb silicon upgrade LayerR min (cm)1 MeV eq-n cm * * * * * *10.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
LECC03, 9/30/2003 Richard Kass/OSU 1 Richard Kass Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector K.E. Arms, K.K. Gan, M.
The BTeV Tracking Systems David Christian Fermilab f January 11, 2001.
M. Aleppo - A measurement of Lorentz angle of rad-hard pixel sensors - Pixel 2000 Genova 1 A measurement of Lorentz angle of rad-hard pixel sensors Dipartimento.
March 20, 2001M. Garcia-Sciveres - US ATLAS DOE/NSF Review1 M. Garcia-Sciveres LBNL & Module Assembly & Module Assembly WBS Hybrids Hybrids WBS.
SVX4 chip 4 SVX4 chips hybrid 4 chips hybridSilicon sensors Front side Back side Hybrid data with calibration charge injection for some channels IEEE Nuclear.
DPF 2013 R. Kass 1 P. Buchholz, M. Ziolkowski Universität Siegen OUTLINE Lessons learned… IBL/nSQP opto-board overview assembly experience radiation hardness.
R. KassIEEE04/Rome 1 Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector Richard Kass The Ohio State University K.E. Arms, K.K.
Si Pixel Tracking Detectors Introduction Sensor Readout Chip Mechanical Issues Performance -Diamond.
U.S. ATLAS Executive Meeting Upgrade R&D August 3, 2005Toronto, Canada A. Seiden UC Santa Cruz.
SLHC Pixel Layout Studies S. Dardin, M. Garcia-Sciveres, M. Gilchriese, N. Hartman LBNL November 4, 2008.
The ALICE Silicon Pixel Detector Gianfranco Segato Dipartimento di Fisica Università di Padova and INFN for the ALICE Collaboration A barrel of two layers.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
DOE/NSF Review of the U.S. ATLAS Construction Project June 3-4, 2002 WBS 1.1 Silicon Subsystem Abe Seiden UC Santa Cruz.
Montpellier, November 12, 2003Vaclav Vrba, Institute of Physics, AS CR 1 Vaclav Vrba Institute of Physics, AS CR, Prague CALICE ECal Status Report.
U.S. Deliverables Cost and Schedule Summary M. G. D. Gilchriese U.S. ATLAS Review Revised Version November 29, 2000.
1 ATLAS Pixel Sensors Sally Seidel University of New Mexico U.S. ATLAS Pixel Review LBNL, 2 November 2000.
U.S. Deliverables Cost and Schedule Summary M. G. D. Gilchriese Revised Version December 18, 2000.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
2 Silicon pixel part Done and to be written Written! Under way To be done Introduction 1.Hybrid Pixel Assembly Concept 2.Silicon sensor 1.First thinned.
ATLAS PIXEL SYSTEM OVERVIEW M. Gilchriese Lawrence Berkeley National Laboratory March 11, 1999.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
1 ATLAS Pixel Sensors Sally Seidel University of New Mexico U.S. ATLAS Pixel Review LBNL, 9 November 2001.
Michał Dwużnik, for the SCT collaboration
M. Gilchriese U.S. Pixel Mechanics Overview M. G. D. Gilchriese Lawrence Berkeley National Laboratory April 2000.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
13 January 2004V. Manzari - Quark Matter Oakland1 The Silicon Pixel Detector (SPD) for the ALICE Experiment V. Manzari/INFN Bari, Italy for the.
DOE/NSF Review of U.S. ATLAS /March 2001 WBS Pixel Overview and WBS Pixel Mechanics M. G. D. Gilchriese Lawrence Berkeley Laboratory.
1 The ATLAS SemiConductor Tracker commissioning at SR1 APS and JPS joint conference October 30, 2006 Ryuichi Takashima ( Kyoto Univ. of Education ) For.
D. M. Lee, LANL 1 07/10/07 Forward Vertex Detector Overview Technical Design Overview Design status.
3D sensors for tracking detectors: present and future applications C. Gemme (INFN Genova) Vertex 2013, Lake Starnberg, Germany, September 2013 Outline:
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
Walter Sondheim 6/9/20081 DOE – Review of VTX upgrade detector for PHENIX Mechanics: Walter Sondheim - LANL.
M. Garcia-Sciveres July 2002 ATLAS A Proton Collider Detector M. Garcia-Sciveres Lawrence Berkeley National Laboratory.
R. Lipton Vertex ‘98 Santorini, Greece The D0 Silicon Microstrip Tracker (D0SMT) Outline  Design  Detector Studies Coupling capacitors Radiation Damage.
Upgrade PO M. Tyndel, MIWG Review plans p1 Nov 1 st, CERN Module integration Review – Decision process  Information will be gathered for each concept.
The Silicon Pixel Detector (SPD) is part of the Inner Tracking System (ITS) of the ALICE experiment. ALICE is designed to study the properties of strongly.
Rene BellwiedSTAR Tracking Upgrade Meeting, Boston, 07/10/06 1 ALICE Silicon Pixel Detector (SPD) Rene Bellwied, Wayne State University Layout, Mechanics.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
Juan Valls - LECC03 Amsterdam 1 Recent System Test Results from the CMS TOB Detector  Introduction  ROD System Test Setup  ROD Electrical and Optical.
A New Inner-Layer Silicon Micro- Strip Detector for D0 Alice Bean for the D0 Collaboration University of Kansas CIPANP Puerto Rico.
Steinar Stapnes, LHCC June The ATLAS inner detector TRT endcap A+B TRT endcap C TRT barrel SCT barrel SCT endcap Pixels uWhole ID sits inside bore.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
DPF2000 ATLAS Pixel Detector M. G. D. Gilchriese Lawrence Berkeley National Laboratory August 2000.
The BTeV Pixel Detector and Trigger System Simon Kwan Fermilab P.O. Box 500, Batavia, IL 60510, USA BEACH2002, June 29, 2002 Vancouver, Canada.
PIXEL 2000 P.Netchaeva INFN Genova 0 Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector. INFN Genova: R.Beccherle, G.Darbo, G.Gagliardi, C.Gemme,
Atlas SemiConductor Tracker final integration and commissioning Andrée Robichaud-Véronneau Université de Genève on behalf of the Atlas SCT collaboration.
ATLAS Pixel Upgrade G. Darbo - INFN / Genova LHCC- CERN 1/76/2008 o Pixel/B-layer Developments LHCC Upgrade Session CERN, 1 / 7 / 2008 G. Darbo - INFN.
Developing Radiation Hard Silicon for the Vertex Locator
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
IBL Overview Darren Leung ~ 8/15/2013 ~ UW B305.
ICHEP02 Chris Parkes ALICE m2 Pixels+Drift+Strips LHCb m2
Micro-channel Cooling
Overview and status of the ATLAS Pixel Detector Attilio Andreazza Università di Milano and I.N.F.N. for the ATLAS Pixel Collaboration Layout of the ATLAS.
Valerio Re (INFN-Pavia) on behalf of the RD53 collaboratios
L H C A T L A S International Collaboration on the LHC Project
Presentation transcript:

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector1 The ATLAS Pixel Detector Pixel 2002 Workshop M. Garcia-Sciveres Lawrence Berkeley National Lab

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector2 Aerial View of the LHC Site Circumference of 27 km Main CERN Site

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector3 A Toroidal LHC ApparatuS Calorimeters Inner Tracking Superconducting Toroids Muon Detectors Tall person Superconducting Solenoid LHC beam pipe

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector4 ATLAS Inner Detector

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector5 Pixel Detector 1.3m 3 hit design

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector6 ATLAS Pixel Collaboration University of Toronto, Canada Academy of Sciences of the Czech Republic Czech Technical University Charles University, Czech Republic CPPM, France U. of Bonn, Germany U. of Dortmund, Germany MPI, Germany U. of Siegen, Germany U. of Wuppertal, Germany INFN Genova, Italy INFN Milano, Italy INFN Udine, Italy Academia Sinica, Taiwan SUNY Albany, USA LBNL, USA Iowa State U., USA U. of New Mexico, USA Ohio State U., USA U. of Oklahoma, USA UC Santa Cruz, USA U. of Wisconsin Madison. USA

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector7 Detector Parameters 3 Barrel layers, 3+3 Disks covering |  |<2.5 Inner radius: ~5cm Outer radius: ~12cm n+ on n oxygenated sensors, 400  m (z,R) x 50  m (phi) pixels. Number of channels 67M (barrel) + 13M (disks). Readout type: zero-suppressed time over threshold. Lifetime Dose, neq/cm 2, 50MRad. LHC Interaction rate: 40MHz. Max readout rate: 160Gb/sec => 7KHz trigger at 1% occupancy. ASICs: 0.25  m CMOS with rad. Tolerant layout. AC signal protocol: LVDS in active volume, optical outside. Active volume operating power: 6.5kW at 2V Silicon operating temperature: <0 o C Cooling system: evaporative C 3 F 8. Radiation length at normal incidence: ~10% R.L.

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector8 Performance  =9  m  =13  m Test beam measurement of single Front End chip bump bonded assembly. For single hits expect  =sqrt(12) x pitch ~ 14  m. Test beam measurement of hit efficiency unirradiated and fully irradiated assemblies. Time (10ns/div.) 0 1 Efficiency

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector9 Sensors Simulation of 70% depletion voltage at innermost layer. 150% LHC nominal fluence. 2 Manufacturers: CIS and Tesla Basic Requirements: –Leakage current after neq/cm 2 : <50nA / pixel –Total input capacitance: <400fF –Inter-pixel capacitance: small –Signal after irradiation: >10Ke -

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector10 Sensors (cont.) Charge collection efficiency (meas) n+ implants and bias grid 100mm wafer with 3 “tiles”, n side Detail of p-side multi guard ring structure

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector11 Custom ASIC Electronics Suite of chips all fabricated in 0.25  m commercial bulk CMOS. Use circuit library with special layout rules for radiation tolerance (based on RD49 library) Doric (from PIN diode to decoded LVDS) VDC array (from LVDS to laser diodes) Front End Chip 2880 channels Module Control Chip Manages data & control between module’s 16 chips Optical interface chips

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector12 Readout architecture FE chip sensor FE chip Module Control Chip Optical driver Optical receiver power HV bias bump bonds LVDS control LVDS data out 1m 100m optical

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector13 Xray of bumps 16 chips. 46,080 bump bonds Solder Bumps SensorICs The “Bare” Module 50  m Indium Bumps OR 6.3cm 2cm

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector14 Pixel Module Schematic Cross Section (through here) Bumps Flex Hybrid (green) Sensor Wirebonds ASICs Pigtail (beyond)

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector15 Interconnection Flex hybrid. Interconnects 16 Front End chips to 1 Module Control. Distributes power to all chips and bias to sensor. All connections wirebonded. Flex pigtail + Al/Cu wire bundle connect flex hybrid to patch panels at either end of pixel detector. Transition to optical at ends of pixel detector. Power continues on Al/Cu wires to end or inner detector.

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector16 Production line oriented design Flex hybrids mounted on frames immediately after fabrication. All module assembly proceeds on frame. Allows safe shipping & handling, testing, bar-code tracking, storage. Modules are removed from frame (by cutting sacrificial ends of flex) only at the time of attaching to a local support. Bar code Fully assembled module on frame

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector17 Detector building blocks Bi-stave assembly Is replicated to form Barrel layers. 2x13 modules Sector is replicated to form disks. 3+3 modules (back side looks the same) Same unit repeated many times for production line assembly, uniformity of work at different sites

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector18 Mechanics and services In the detector volume: –high power density –minimum material (=> no thermal mass) –cold operation –<10  m alignment maintained between room and operating temperatures –Remain cold & dry even during down times Outside detector volume: –Supply 2V power from 100m away with acceptable voltage drop –Supply adequate cooling with minimal plumbing –Meet overall detector geometry and installation constraints –Minimize material in front of calorimeters at low angles

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector19 Module support Exploded view of sector Stave

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector20 1 st mode Hz 1 st mode546 Hz Global Support F.E.A. Real life prototype Disk section of frame Solid computer model of frame (cutaway view) TV Holograph image Need very stiff low mass structures with near zero CTE (build at room temperature- operate down to –25C). Use carbon composites, intense computer modeling & simulation barrel disks

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector21 Pixel and Beam Pipe Assembly Service and Beampipe Support Pixel Detector A “package” that can be inserted in place into the inner detector (and removed also) Fits into a support tube that provides mechanical support, but also electrical and environmental isolation from the outside. Cold inside & dry inside & out no matter outside conditions

P i x e l C a r m e l Sept. 9, 2002M. Garcia-Sciveres - The ATLAS Pixel Detector22 Construction Timeline Sensor production: started Pre-production chip submission: Dec Production chip submission: Summer 2003 End Production Module assembly: Dec Start integration at CERN: Jan Start lowering detector into cavern: Fall 2005 Begin commissioning: Spring 2006 First collisions: 2007