ITPA-Moscow 060410 Role of neutron emission spectrometry on ITER and instrumental requirements Göran Ericsson E.Andersson Sundén, A.Combo 2), S.Conroy,

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

TOF spectrometers for measurement of n d /n t ratios K.Okada, T.Nishitani 2, K. Ochiai 2, K.Kondo 2, M.Sasao, M. Okamoto, K.Shinto, S.Kitajima Tohoku Univ.
Neutron detectors and spectrometers 1) Complicated reactions → strong dependency of efficiency on energy 2) Small efficiency → necessity of large volumes.
for Fusion Power Monitoring
Robert Johnson Faculty: Dr. Calvin Howell Grad Student: David Ticehurst Development of a Neutron Detector with Kinetic Energy Measurement Capability.
Neutron background measurements at LNGS Gian Luca Raselli INFN - Pavia JRA1 meeting, Paris 14 Feb
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
MMFW Madison, Wisconsin 6 May 2011 D.J. Den Hartog, R. M. Magee, S.T.A. Kumar, V.V. Mirnov (University of Wisconsin–Madison) D. Craig (Wheaton College)
Design on Target and Moderator of X- band Compact Electron Linac Neutron Source for Short Pulsed Neutrons Kazuhiro Tagi.
Neutron Generation and Detection Lee Robertson Instrument & Source Division Oak Ridge National Laboratory 17 th National School on Neutron and X-ray Scattering.
Precise neutron inelastic cross section measurements A.Negret 1 1 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest, ROMANIA.
Institute for Safety Research Dávid Légrády IP-EUROTRANS ITC2 Development of a Neutron Time-of-Flight Source at the ELBE Accelerator ELBE Neutron source.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
1 Applications of ADAS to ITER Diagnostics Robin Barnsley and ITER Diagnostics Division Martin O’Mullane, Strathclyde University ADAS Workshop, Cadarache,
Kaschuck Yu.A., Krasilnikov A.V., Prosvirin D.V., Tsutskikh A.Yu. SRC RF TRINITI, Troitsk, Russia Status of the divertor neutron flux monitor design and.
Some fission yields for 235U (n,f), 239Pu (n,f), 238U (n,f) reactions in ΣΣ neutron spectrum Dr. Cristina Garlea National Institute for R&D of Physics.
Profile Measurement of HSX Plasma Using Thomson Scattering K. Zhai, F.S.B. Anderson, J. Canik, K. Likin, K. J. Willis, D.T. Anderson, HSX Plasma Laboratory,
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
RECENT STATUS OF NEUTRON AND GAMMA-RAY MEASUREMENTS FOR DIAGNOSTICS IN JAPAN Kentaro OCHIAI JAPAN ATOMIC ENERGY AGENCY FNS.
Method for 14-MeV neutron yield determination using a MPR neutron spectrometer Göran Ericsson, H.Sjöstrand, S.Conroy, E.Andersson Sundén, A.Combo 1, N.Cruz.
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
PLASMA HEATING AND HOT ION SUSTAINING IN MIRROR BASED HYBRIDS
1 ITPA St Petersburg April 2009G.Gorini JET results on the determination of thermal/non-thermal fusion yield from neutron emission spectroscopy.
T.M. Biewer, Oct. 20 th, 2003NSTX Physics Meeting1 T. M. Biewer, R.E. Bell October 20 th, 2003 NSTX Physics Meeting Princeton Plasma Physics Laboratory.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Neutron inelastic scattering measurements at the GELINA facility of EC-JRC-IRMM A. Negret 1, C. Borcea 1, A. Plompen 2 1 NIPNE-HH, Romania 2 EC-JRC-IRMM,
Munich-Centre for Advanced Photonics A pixel detector system for laser-accelerated ion detection Sabine Reinhardt Fakultät für Physik, Ludwig-Maximilians-Universität.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
Pellet Charge Exchange Measurement in LHD & ITER ITPA Tohoku Univ. Tetsuo Ozaki, P.Goncharov, E.Veschev 1), N.Tamura, K.Sato, D.Kalinina and.
Passive detectors (nuclear track detectors) – part 2: Applications for neutrons This research project has been supported by the Marie Curie Initial Training.
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Electron pick-up. ~1/E What about fission fragments????? Bragg curve stochastic energy.
M Cecconello et al 4 th IAEA Technical Meeting on Spherical Tori 14 th International Workshop on ST – Rome, Italy, October, 7 – 10, EURATOM/VR Association,
Neutron inelastic cross section measurement on 28 Si Alexandru Negret Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest,
Absolute neutron yield measurement using divertor NFM Kaschuck Yu.A., Krasilnikov A.V., Prosvirin D.V., Tsutskikh A.Yu. SRC RF TRINITI, Troitsk, Russia.
M Asnal *, T Liamsuwan 2 and T Onjun 1 1 Sirindhorn International Institute of Technology, Thammasat University 2 Nuclear Research and Development Division,
Neutron diagnostics for fusion experiments
1 Imaging X-Ray Crystal Spectrometer with Fast Detector for Fast Measurement of Profiles of Ti and Intrinsic Plasma Rotation Velocity without Perturbation.
Fusion Neutronics Activity at JAERI from October 2000 to September 2001 Peseted by Takeo NISHTANI IEA International Work Shop on Fusion Neutronics The.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
D-Alpha Fast-Ion Diagnostic: Recent Results from DIII-D W.W. Heidbrink, UC Irvine D-Alpha Diagnostic: Yadong Luo, K. Burrell, + Ion Cyclotron Heating:
1 Nuclear Fusion Class : Nuclear Physics K.-U.Choi.
NEEP 541 – Neutron Damage Fall 2002 Jake Blanchard.
53rd Annual Meeting of the Division of Plasma Physics, November , 2011, Salt Lake City, Utah When the total flow will move approximately along the.
Initial Results from the Scintillator Fast Lost Ion Probe D. Darrow NSTX Physics Meeting February 28, 2005.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Discussion ITPA-10 in Troitsk 11 of April 2006 (Neutron Working Group)
The 14 MeV Frascati Neutron Generator (FNG)
Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod S. D. Scott Princeton Plasma Physics Laboratory In collaboration with R. Granetz, D. Beals, C.
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
T. Biewer, Sep. 20 th, 2004 NSTX Results Review of 11 Edge Ion Heating by Launched HHFW in NSTX T.M. Biewer, R.E. Bell, S. Diem, P.M. Ryan, J.R.
Measurement of prompt fission g-rays with lanthanum halide scintillation detectors A. Oberstedt This work was supported by the EFNUDAT programme of the.
Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station Yu. A. Trofimov, Yu. D. Kotov, V.
Fast neutron flux measurement in CJPL
Gamma Ray Spectrometry System Design for ITER Plasma Diagnostics
Zhouqian, Wan baonian and spectroscopy team
Associazione EURATOM-ENEA sulla Fusione
Diagnostics of FRIBs beam transport line
The Frascati Neutron Generator
Measurements of the 238U radiative capture cross section using C6D6
Kinetic Theory.
R & D Status of Beam Neutralization System M. Sasao, K. Shinto, M
1. Introduction Secondary Heavy charged particle (fragment) production
Presented by Takeo Nishitani Leader of the Fusion Neutronics Sub-task
Transition Region and Coronal Explorer (TRACE)
Neutron spectrometry in fusion energy research
Mirko Salewski Technical University of Denmark Department of Physics
Presentation transcript:

ITPA-Moscow Role of neutron emission spectrometry on ITER and instrumental requirements Göran Ericsson E.Andersson Sundén, A.Combo 2), S.Conroy, N.Cruz 2), M.Gatu Johnson, L.Giacomelli, W.Glasser, G.Gorini 1), C.Hellesen, A.Hjalmarsson, J.Källne, R.Pereira 2), E.Ronchi, H.Sjöstrand, J.Sousa 2), M.Tardocchi 1), and M.Weiszflog Uppsala University [EURATOM-VR], Uppsala Sweden 1) Univ. of Milano-Bicocca and Istituto di Fisica del Plasma [EURATOM-ENEA/CNR], Milan, Italy 2) Instituto Superior Técnico [EURATOM-IST ], Lisboa, Portugal. 1 CONTENTS OF PRESENTATION 1 Introduction 2 ITER parameters from n spectrometry 3 Examples of n spectrometry results 4 NES capabilities (single sight-line) 5 LOS and interface considerations 6 Conclusion

ITPA-Moscow Neutron diagnostic systems and functions Neutron diagnostics based on measurement of: Neutron inclusive flux:  n Neutron collimated flux: F n - cameras for neutron emission tomography - neutron emission spectrometry Direct (d) and in-direct (s, scattered) neutron flux components at detector  n =  d +  s and F n = F d + F s Neutron diagnostic systems – multi-parameter measurements: Fission chambers + activation foils Cameras: RNC + VNC Cameras + spectrometer Systems of spectrometers Recent progress spectrometers - Europe: Two new n spectrometers operating at JET – TOFOR, MPRu (UU/VR) Unfolding techniques and detailed calibration of NE213 (ENEA, PTB) JET-EP2 – programs on compacts and digital electronics (ENEA, IST) “Study of Neutron Spectrometers for ITER”, J.Källne (UU/VR) 2

ITPA-Moscow Potential information in high power DT : neutron emission spectroscopy + camera _____________________________________________________________________________________ A. Fuel ion kinetics (a) Thermal (T) population (1) reaction rate (R t ) (2) density product n d n t (3) temperature T T * (b) Population with significant supra-thermal (ST) velocity components; as above but (1) up to 4 ST reaction rate components (R ST ) besides R T (2) relative densities of ST velocity components (3) T T and T ST temperatures (if Maxwellian, otherwise slowing down) B. Confined  -particles (1) amplitude of slowing down distribution* (2) pressure C. Collective motion of fuel ion populations (1) toroidal rotation* D. Fusion parameters (1) power P f *; will provide values for dd and dt reactions separately (2) division of P f into thermal and supra-thermal components (3) fuel ion densities in the core (n d, n t and n d /n t *) +) E. Other information (1) the extended spectrum of direct and scattered neutrons from the plasma _____________________________________________________________________________________ * Denotes diagnostic functions listed as essential for measurement on ITER +) Requires simultaneous measurement of 2.5-MeV neutrons from dd and 14-MeV from dt.

ITPA-Moscow Some selected NES results from JET (MPR) Ohmic phase – thermal T i extracted RF phase – isotropic, anisotropic HE components LE component due to scattered n

ITPA-Moscow Peak (energy) shift shown in pulses with different phasing of RF antenna Alpha knock-on neutrons Count rate  power Spectral components  thermal fraction

ITPA-Moscow Count rate  power Spectral components  thermal fraction

ITPA-Moscow Alpha knock-on neutrons

ITPA-Moscow Peak (energy) shift shown in pulses with different phasing of RF antenna Alpha knock-on neutrons Count rate  power Spectral components  thermal fraction

ITPA-Moscow NES capabilities (single sight-line) Energy calibration: Independent and absolutecalibration station For toroidal rotation  v tor < 10km/s  E < 3 keV Energy resolution (instrumental, derived, …) For temperatureT i = 4 keV dE/E = 2.5% Sensitivity (S:B) For AKN, RF, TBNS:B > Time resolution in derived quantities (C cap, LOS,  ) For T i (t)  t < 10 ms For Q th /Q tot  t < 200 ms Separate direct and scattered flux E range, low-E n sensitivitybenchmarking of n transp. calc.

ITPA-Moscow Magnetic proton recoil System in operation at JET Classic nuclear physics instr. Separate tasks: passive n-to-p, passive E det., active p counting f(E n ) from f(x p ) Near-Gaussian response function Abs. calibration in E and  Flexibility, 1 < E n < 18 MeV Separate F d and F s, E bite 20% dE/E = 2.5%,  E < 2 keV (10 -4 ) S:B > C cap > MHz  t < 5 ms (for T i 1 MHz Size (>m 3 ), magnetic, efficiency ( cm 2 )

ITPA-Moscow MPR instrumental response function (2.5% 14MeV)

ITPA-Moscow Magnetic proton recoil System in operation at JET Classic nuclear physics instr. Separate tasks: passive n-to-p, passive E det., active p counting f(E n ) from f(x p ) Near-Gaussian response function Abs. calibration in E and  Flexibility, 1 < E n < 18 MeV Separate F d and F s, E bite 20% dE/E = 2.5%,  E < 2 keV (10 -4 ) S:B > C cap > MHz  t < 5 ms (for T i 1 MHz Size (>m 3 ), magnetic, efficiency ( cm 2 )

ITPA-Moscow Neutron detector test and calibration station: MPRw: A w-detector can be developed to improve the time resolution and dynamic range of the diagnostic in, e.g., yield measurements. MPRx: A test/calibration facility for flux detectors in well-characterized F n (E n ) MPR MPRw/x

ITPA-Moscow LOS considerations Ideal case: 3 spectrometer system co-, counter (NBI) tangential, radial Next best:co-tangential and radial Single instr:TBD Present ITER design: radial LOS? Previous studies: NBI – counter-tangential best, co- OK ICRH – radial best, tangential OK AKN – co-tangential viewing best, radial OK Q th /Q tot – dual LOS best, radial OK Yield – tangential LOS best, radial OK

ITPA-Moscow MPR needs n/cm 2 on foil for full performance (n camera?)

ITPA-Moscow Summary and conclusions High-performance n spectrometer of MPR type: State of the fuel ions: T i, ST comp., AKN, v rot, … Absolute, independent yield determination, Q th /Q tot Absolutely calibrated (E,  ) n detector test station Scattered n flux for n transport calc. benchmarking Interface issues, magnetics THANK YOU !

ITPA-Moscow Summary prel. capabilities and 14 MeV MPRTOF14NDDNE213 ”Required” Designed system Conceptual design Best achieved C cap >MHz50 kHz> MHz250 kHz N/A dE/E2.5% 2%1-2%* <2.5%  (cm 2 ) N/A EE < 2keV ? ? ? <3 keV S:B> ? 50 >10000  t (T i ) 5 ms100 ms 5 ms?250 ms <100 ms E range1-18 MeV>10 MeV?>13 MeV1-18 MeV § 1-18 MeV Separation dir. – scatt. YesYes?No? Yes * Derived from unfolding, not instumental as for others § Single peaks, prob. not weak (%) LE components

ITPA-Moscow TOF-14 Coincidence measurement, n double scattering Near-Gaussian resp. fcn f(E n ) from f(t n’ ) Calibration with gammas, muons, sources High efficiency, 0.01 cm 2 ? (14 dE/E = 2.5% C cap = 50 kHz (14 MeV) ? Signal:accidentals = 100 (sensitivity)  t < 100 ms (for T i ) Size (>m 3 ), performance, complicated (100’s detectors)

ITPA-Moscow Diamonds (NDD, CVD) Detector in n ”beam” Full E n deposited: 12 C(n,  ) 9 Be Radiation hard, high T oper. dE/E > 2% C cap = MHz Complicated resp fcn - 9 Be*, 12 C(n,n), (n,3  n’) f(E n ) from f(Q) Individual detector calibration Small size, low efficiency Limited experience base Resp.fcn, bandwidth, availability/cost, charge trapping n NDD

ITPA-Moscow Scintillator ”compacts” (NE213) Detector in n “beam” n/  separation (PSD) Complicated resp fcn – H(n,p) single and multiple, 12 C(n,n), inelastic channels Each detector calibrated at accelerator f(E n ) from unfolding Stability monitoring (C n, T, t) P.h. resolution 5-8% dE/E = 1-2% (unfolded) ? Sensitivity 2% (unfolded) ? C cap > 200 kHz ?  t < 250 ms (for T i ) ? Calibration, stability, performance n NE213 n’