Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.

Slides:



Advertisements
Similar presentations
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Advertisements

Florida International University COP 4770 Introduction of Weka.
Weka & Rapid Miner Tutorial By Chibuike Muoh. WEKA:: Introduction A collection of open source ML algorithms – pre-processing – classifiers – clustering.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
UNIVERSITY OF JYVÄSKYLÄ DEPARTMENT OF MATHEMATICAL INFORMATION TECHNOLOGY Tutorial 1: Introduction to WEKA and YALETIES443: Introduction to DM 1 Tutorial.
WEKA Evaluation of WEKA Waikato Environment for Knowledge Analysis Presented By: Manoj Wartikar & Sameer Sagade.
1 SIMS 290-2: Applied Natural Language Processing Preslav Nakov October 6, 2004.
Introduction to Weka and NetDraw
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
March 25, 2004Columbia University1 Machine Learning with Weka Lokesh S. Shrestha.
An Extended Introduction to WEKA. Data Mining Process.
Introduction to WEKA Aaron 2/13/2009. Contents Introduction to weka Download and install weka Basic use of weka Weka API Survey.
Machine Learning with WEKA. WEKA: the bird Copyright: Martin Kramer
1 SIMS 290-2: Applied Natural Language Processing Marti Hearst October 30, 2006 Some slides by Preslav Nakov and Eibe Frank.
1 How to use Weka How to use Weka. 2 WEKA: the software Waikato Environment for Knowledge Analysis Collection of state-of-the-art machine learning algorithms.
CSCI 347 / CS 4206: Data Mining Module 05: WEKA Topic 04: Data Preparation Tools.
CSCI 347 / CS 4206: Data Mining Module 05: WEKA Topic 01: WEKA Navigation.
 The Weka The Weka is an well known bird of New Zealand..  W(aikato) E(nvironment) for K(nowlegde) A(nalysis)  Developed by the University of Waikato.
Contributed by Yizhou Sun 2008 An Introduction to WEKA.
Department of Computer Science, University of Waikato, New Zealand Geoff Holmes WEKA project and team Data Mining process Data format Preprocessing Classification.
WEKA and Machine Learning Algorithms. Algorithm Types Classification (supervised) Given -> A set of classified examples “instances” Produce -> A way of.
Appendix: The WEKA Data Mining Software
In part from: Yizhou Sun 2008 An Introduction to WEKA Explorer.
Department of Computer Science, University of Waikato, New Zealand Bernhard Pfahringer (based on material by Eibe Frank, Mark Hall, and Peter Reutemann)
Machine Learning for Language Technology Introduction to Weka: Arff format and Preprocessing.
Weka: a useful tool in data mining and machine learning Team 5 Noha Elsherbiny, Huijun Xiong, and Bhanu Peddi.
Machine Learning with Weka Cornelia Caragea Thanks to Eibe Frank for some of the slides.
Weka: Experimenter and Knowledge Flow interfaces Neil Mac Parthaláin
For ITCS 6265/8265 Fall 2009 TA: Fei Xu UNC Charlotte.
W E K A Waikato Environment for Knowledge Analysis Branko Kavšek MPŠ Jožef StefanNovember 2005.
Artificial Neural Network Building Using WEKA Software
1 1 Slide Using Weka. 2 2 Slide Data Mining Using Weka n What’s Data Mining? We are overwhelmed with data We are overwhelmed with data Data mining is.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Weka – A Machine Learning Toolkit October 2, 2008 Keum-Sung Hwang.
Introduction to Weka Xingquan (Hill) Zhu Slides copied from Jeffrey Junfeng Pan (UST)
 A collection of open source ML algorithms ◦ pre-processing ◦ classifiers ◦ clustering ◦ association rule  Created by researchers at the University.
W E K A Waikato Environment for Knowledge Aquisition.
An Exercise in Machine Learning
***Classification Model*** Hosam Al-Samarraie, PhD. CITM-USM.
Weka Tutorial. WEKA:: Introduction A collection of open source ML algorithms – pre-processing – classifiers – clustering – association rule Created by.
Weka. Weka A Java-based machine vlearning tool Implements numerous classifiers and other ML algorithms Uses a common.
Machine Learning with WEKA - Yohan Chin. WEKA ? Waikato Environment for Knowledge Analysis A Collection of Machine Learning algorithms for data tasks.
WEKA's Knowledge Flow Interface Data Mining Knowledge Discovery in Databases ELIE TCHEIMEGNI Department of Computer Science Bowie State University, MD.
In part from: Yizhou Sun 2008 An Introduction to WEKA Explorer.
@relation age sex { female, chest_pain_type { typ_angina, asympt, non_anginal,
WEKA: A Practical Machine Learning Tool WEKA : A Practical Machine Learning Tool.
Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression.
Department of Computer Science, University of Waikato, New Zealand Geoff Holmes WEKA project and team Data Mining process Data format Preprocessing Classification.
An Introduction to WEKA
Machine Learning: Decision Trees in AIMA and WEKA
An Introduction to WEKA
Machine Learning: Decision Trees in AIMA and WEKA
Machine Learning with WEKA
Waikato Environment for Knowledge Analysis
WEKA.
Sampath Jayarathna Cal Poly Pomona
An Introduction to WEKA
Machine Learning with WEKA
Machine Learning with WEKA
Machine Learning with Weka
An Introduction to WEKA
Tutorial for WEKA Heejun Kim June 19, 2018.
Machine Learning with Weka
Machine Learning with WEKA
Lecture 10 – Introduction to Weka
Copyright: Martin Kramer
Machine Learning: Decision Trees in AIMA and WEKA
Data Mining CSCI 307, Spring 2019 Lecture 7
Data Mining CSCI 307, Spring 2019 Lecture 8
Presentation transcript:

Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression Clustering Association Rules Attribute Selection Data Visualization The Experimenter The Knowledge Flow GUI Conclusions Machine Learning with WEKA - a reminder (?) based on notes by

10/25/2015University of Waikato2 WEKA: the bird Copyright: Martin Kramer

10/25/2015University of Waikato3 WEKA: the software Machine learning/data mining software written in Java (distributed under the GNU Public License) Used for research, education, and applications Complements “Data Mining” by Witten & Frank Main features:  Comprehensive set of data pre-processing tools, learning algorithms and evaluation methods  Graphical user interfaces (incl. data visualization)  Environment for comparing learning algorithms

10/25/2015University of Waikato4 WEKA: versions There are several versions of WEKA:  WEKA 3.0: “book version” compatible with description in data mining book 1 st edition  WEKA 3.2: “GUI version” adds graphical user interfaces (earlier version is command-line only)  WEKA on SoC linux and ISS windows  This talk is based on snapshots of WEKA 3.3  … with some extra up-to-date snapshots  Only changes are “layout” and some extras

10/25/2015University of age sex { female, chest_pain_type { typ_angina, asympt, non_anginal, cholesterol exercise_induced_angina { no, class { present, 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files

10/25/2015University of age sex { female, chest_pain_type { typ_angina, asympt, non_anginal, cholesterol exercise_induced_angina { no, class { present, 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files

10/25/2015University of Waikato7

10/25/2015University of Waikato8

10/25/2015University of Waikato9

10/25/2015University of Waikato10 Explorer: pre-processing the data Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary Data can also be read from a URL or from an SQL database (using JDBC) Pre-processing tools in WEKA are called “filters” BUT it may be easier to reformat to ARFF yourself (write a program in python / java … or just use WordPad to type in the text – but make sure format is right!), this helps with data understanding

10/25/2015University of Waikato11

10/25/2015University of Waikato12

10/25/2015University of Waikato13

10/25/2015University of Waikato14

10/25/2015University of Waikato15

10/25/2015University of Waikato16

10/25/2015University of Waikato17

10/25/2015University of Waikato18 Explorer: building “classifiers” Classifiers in WEKA are models for predicting nominal or numeric quantities Implemented learning schemes include:  Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes’ nets, … You explore by trying different classifiers, see which works best for you…

10/25/2015University of Waikato19

10/25/2015University of Waikato20

10/25/2015University of Waikato21

10/25/2015University of Waikato22

10/25/2015University of Waikato23

10/25/2015University of Waikato24

10/25/2015University of Waikato25

10/25/2015University of Waikato26

10/25/2015University of Waikato27

10/25/2015University of Waikato28

10/25/2015University of Waikato29

10/25/2015University of Waikato30

10/25/2015University of Waikato31

10/25/2015University of Waikato32

10/25/2015University of Waikato33

10/25/2015University of Waikato34

10/25/2015University of Waikato35

10/25/2015University of Waikato36

10/25/2015University of Waikato37

10/25/2015University of Waikato38

10/25/2015University of Waikato39

10/25/2015University of Waikato40

10/25/2015University of Waikato41

10/25/2015University of Waikato42

10/25/2015University of Waikato43

10/25/2015University of Waikato44

10/25/2015University of Waikato45

10/25/2015University of Waikato46

10/25/2015University of Waikato47

10/25/2015University of Waikato48

10/25/2015University of Waikato49

10/25/2015University of Waikato50

10/25/2015University of Waikato51

10/25/2015University of Waikato52

10/25/2015University of Waikato53 WEKA has more… Clustering data into groups Finding associations between attributes Visualisation - online analytical processing Experimenter to run and compare different MLs Knowledge Flow GUI 3 rd -party add-ons: sourceforge.net

WEKA from ISS PC 2009

@relation center centre centerpercent color colour colorpercent english 1,32,3, 0,20,0, UK 0,25,0, 0,12,0, UK 9,27,25, 0,84,0, UK 0,19,0, 0,24,0, UK 0,16,0, 0,14,0, UK 0,16,0, 0,12,0, UK 0,21,0, 0,38,0, UK 0,25,0, 0,34,0, UK 2,26,7, 2,3,40, UK 2,32,5, 1,59,2, UK 31,0,100, 55,0,100, US 61,0,100, 26,0,100, US 24,0,100, 11,0,100, US 12,1,92, 21,4,84, US 8,0,100, 4,2,67, US 10,0,100, 8,0,100, US 19,0,100, 22,0,100, US 14,0,100, 7,0,100, US 14,0,100, 6,0,100, US 8,5,62, 24,0,100, US

@relation center centre centerpercent color colour colorpercent english 10,5,33, 0,20,0, UK

10/25/2015University of Waikato76 WEKA has more… Clustering data into groups Finding associations between attributes Visualisation - online analytical processing Experimenter to run and compare different MLs Knowledge Flow GUI 3 rd -party add-ons: sourceforge.net