TextBook Concepts of Programming Languages, Robert W. Sebesta, (10th edition), Addison-Wesley Publishing Company CSCI18 - Concepts of Programming languages.

Slides:



Advertisements
Similar presentations
ICE1341 Programming Languages Spring 2005 Lecture #5 Lecture #5 In-Young Ko iko.AT. icu.ac.kr iko.AT. icu.ac.kr Information and Communications University.
Advertisements

ISBN Chapter 3 Describing Syntax and Semantics.
Describing Syntax and Semantics
Concepts of Programming Languages 1 Describing Syntax and Semantics Brahim Hnich Högskola I Gävle
CS 330 Programming Languages 09 / 13 / 2007 Instructor: Michael Eckmann.
Chapter 3 Describing Syntax and Semantics Sections 1-3.
Chapter 3 Describing Syntax and Semantics Sections 1-3.
ISBN Chapter 3 Describing Syntax and Semantics.
Chapter 3 Describing Syntax and Semantics Sections 1-3.
Dr. Muhammed Al-Mulhem 1ICS ICS 535 Design and Implementation of Programming Languages Part 1 Fundamentals (Chapter 4) Compilers and Syntax.
ISBN Chapter 3 Describing Syntax and Semantics.
ISBN Chapter 3 Describing Syntax and Semantics.
(2.1) Grammars  Definitions  Grammars  Backus-Naur Form  Derivation – terminology – trees  Grammars and ambiguity  Simple example  Grammar hierarchies.
Describing Syntax and Semantics
1 Syntax and Semantics The Purpose of Syntax Problem of Describing Syntax Formal Methods of Describing Syntax Derivations and Parse Trees Sebesta Chapter.
ISBN Chapter 3 Describing Syntax and Semantics.
Describing Syntax and Semantics
CS 355 – PROGRAMMING LANGUAGES Dr. X. Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax.
Copyright © 1998 by Addison Wesley Longman, Inc. 1 Chapter 3 Syntax - the form or structure of the expressions, statements, and program units Semantics.
1 Chapter 3 Describing Syntax and Semantics. 3.1 Introduction Providing a concise yet understandable description of a programming language is difficult.
ISBN Chapter 3 Describing Syntax and Semantics.
CS Describing Syntax CS 3360 Spring 2012 Sec Adapted from Addison Wesley’s lecture notes (Copyright © 2004 Pearson Addison Wesley)
Grammars CPSC 5135.
Chapter Describing Syntax and Semantics. Chapter 3 Topics 1-2 Introduction The General Problem of Describing Syntax Formal Methods of Describing.
3-1 Chapter 3: Describing Syntax and Semantics Introduction Terminology Formal Methods of Describing Syntax Attribute Grammars – Static Semantics Describing.
C H A P T E R TWO Syntax and Semantic.
ISBN Chapter 3 Describing Syntax and Semantics.
ISBN Chapter 3 Describing Semantics -Attribute Grammars -Dynamic Semantics.
ISBN Chapter 3 Describing Syntax and Semantics.
Course: ICS313 Fundamentals of Programming Languages. Instructor: Abdul Wahid Wali Lecturer, College of Computer Science and Engineering.
Describing Syntax and Semantics
ISBN Chapter 3 Describing Syntax and Semantics.
1 Syntax In Text: Chapter 3. 2 Chapter 3: Syntax and Semantics Outline Syntax: Recognizer vs. generator BNF EBNF.
Muhammad Idrees Lecturer University of Lahore 1. Outline Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute.
The College of Saint Rose CIS 433 – Programming Languages David Goldschmidt, Ph.D. from Concepts of Programming Languages, 9th edition by Robert W. Sebesta,
3.2 Semantics. 2 Semantics Attribute Grammars The Meanings of Programs: Semantics Sebesta Chapter 3.
ISBN Chapter 3 Describing Semantics.
Chapter 3 Part II Describing Syntax and Semantics.
ISBN Chapter 3 Describing Syntax and Semantics.
Chapter 3 Describing Syntax and Semantics. Copyright © 2012 Addison-Wesley. All rights reserved. 1-2 Chapter 3 Topics Introduction The General Problem.
Chapter 3 Describing Syntax and Semantics. Chapter 3: Describing Syntax and Semantics - Introduction - The General Problem of Describing Syntax - Formal.
C HAPTER 3 Describing Syntax and Semantics. T OPICS Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute.
Copyright © 2006 Addison-Wesley. All rights reserved. Ambiguity in Grammars A grammar is ambiguous if and only if it generates a sentential form that has.
CCSB 314 Programming Language Department of Software Engineering College of IT Universiti Tenaga Nasional Chapter 3 Describing Syntax and Semantics.
ISBN Chapter 3 Describing Syntax and Semantics.
1 / 48 Formal a Language Theory and Describing Semantics Principles of Programming Languages 4.
Chapter 3 © 2002 by Addison Wesley Longman, Inc Introduction - Who must use language definitions? 1. Other language designers 2. Implementors 3.
Describing Syntax and Semantics Session 2 Course : T Programming Language Concept Year : February 2011.
Chapter 3 Describing Syntax and Semantics. Copyright © 2012 Addison-Wesley. All rights reserved.1-2 Chapter 3 Topics Introduction The General Problem.
ISBN Chapter 3 Describing Syntax and Semantics.
C H A P T E R T W O Syntax and Semantic. 2 Introduction Who must use language definitions? Other language designers Implementors Programmers (the users.
1 CS Programming Languages Class 04 September 5, 2000.
Lecture 3 Concepts of Programming Languages Arne Kutzner Hanyang University / Seoul Korea.
Copyright © 2006 Addison-Wesley. All rights reserved.1-1 ICS 410: Programming Languages Chapter 3 : Describing Syntax and Semantics Syntax.
PZ03CX Programming Language design and Implementation -4th Edition Copyright©Prentice Hall, PZ03CX - Language semantics Programming Language Design.
Chapter 3 – Describing Syntax CSCE 343. Syntax vs. Semantics Syntax: The form or structure of the expressions, statements, and program units. Semantics:
Describing Syntax and Semantics Chapter 3: Describing Syntax and Semantics Lectures # 6.
Chapter 3: Describing Syntax and Semantics
Chapter 3 – Describing Syntax
Describing Syntax and Semantics
Describing Syntax and Semantics
Chapter 3 – Describing Syntax
Concepts of Programming Languages
Describing Syntax and Semantics
Syntax Questions 6. Define a left recursive grammar rule.
Describing Syntax and Semantics
Describing Syntax and Semantics
Chapter 3 Describing Syntax and Semantics.
Describing Syntax and Semantics
Presentation transcript:

TextBook Concepts of Programming Languages, Robert W. Sebesta, (10th edition), Addison-Wesley Publishing Company CSCI18 - Concepts of Programming languages

Chapter 3 Describing Syntax & Semantics CSCI18 - Concepts of Programming languages

Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute Grammars Describing the Meanings of Programs: Dynamic Semantics CSCI18 - Concepts of Programming languages

Introduction Syntax: the form or structure of the expressions, statements, and program units Semantics: the meaning of the expressions, statements, and program units Syntax and semantics provide a language’s definition Users of a language definition Other language designers Implementers Programmers (the users of the language) CSCI18 - Concepts of Programming languages

The General Problem of Describing Syntax: Terminology A sentence is a string of characters over some alphabet A language is a set of sentences A lexeme is the lowest level syntactic unit of a language (e.g., *, sum, begin) A token is a category of lexemes (e.g., identifier) CSCI18 - Concepts of Programming languages

Formal Definition of Languages Recognizers A recognition device reads input strings over the alphabet of the language and decides whether the input strings belong to the language Example: syntax analysis part of a compiler Generators A device that generates sentences of a language One can determine if the syntax of a particular sentence is syntactically correct by comparing it to the structure of the generator Language generators CSCI18 - Concepts of Programming languages

BNF and Context-Free Grammars Developed by Noam Chomsky in the mid-1950s Language generators, meant to describe the syntax of natural languages Define a class of languages called context-free languages Backus-Naur Form (1959) Invented by John Backus to describe Algol 58 BNF is equivalent to context-free grammars CSCI18 - Concepts of Programming languages

BNF Fundamentals In BNF, abstractions are used to represent classes of syntactic structures -- they act like syntactic variables (also called nonterminal symbols, or just terminals) Terminals are lexemes or tokens A rule has a left-hand side (LHS), which is a non-terminal, and a right-hand side (RHS), which is a string of terminals and/or non-terminals Non-terminals are often enclosed in angle brackets Examples of BNF rules: <ident_list> → identifier | identifier, <ident_list> <if_stmt> → if <logic_expr> then <stmt> Grammar: a finite non-empty set of rules A start symbol is a special element of the nonterminals of a grammar CSCI18 - Concepts of Programming languages

BNF Rules An abstraction (or nonterminal symbol) can have more than one RHS <stmt> → <single_stmt> | begin <stmt_list> end CSCI18 - Concepts of Programming languages

Describing Lists Syntactic lists are described using recursion <ident_list> → ident | ident, <ident_list> A derivation is a repeated application of rules, starting with the start symbol and ending with a sentence (all terminal symbols) CSCI18 - Concepts of Programming languages

An Example Grammar & Derivation <program> → <stmts> <stmts> → <stmt> | <stmt> ; <stmts> <stmt> → <var> = <expr> <var> → a | b | c | d <expr> → <term> + <term> | <term> - <term> <term> → <var> | const <program> => <stmts> => <stmt> => <var> = <expr> => a = <expr> => a = <term> + <term> => a = <var> + <term> => a = b + <term> => a = b + const CSCI18 - Concepts of Programming languages

An Example Derivation <program> => <stmts> => <stmt> => <var> = <expr> => a = <expr> => a = <term> + <term> => a = <var> + <term> => a = b + <term> => a = b + const CSCI18 - Concepts of Programming languages

Derivations Every string of symbols in a derivation is a sentential form A sentence is a sentential form that has only terminal symbols A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded CSCI18 - Concepts of Programming languages

Parse Tree A hierarchical representation of a derivation CSCI18 - Concepts of Programming languages

Ambiguity in Grammars A grammar is ambiguous if and only if it generates a sentential form that has two or more distinct parse trees some string that it can generate in more than one way semantic information is needed to select the intended parse For example, in C the following: x * y ; can be interpreted as either: the declaration of an identifier named y of type pointer-to-x, or an expression in which x is multiplied by y and then the result is discarded. CSCI18 - Concepts of Programming languages

An Ambiguous Expression Grammar CSCI18 - Concepts of Programming languages

Associativity of Operators Operator associativity can also be indicated by a grammar CSCI18 - Concepts of Programming languages

Extended BNF Optional parts (0 or one) are placed in brackets [ ] <proc_call> → ident [(<expr_list>)] Alternative parts of RHSs are placed inside parentheses and separated via vertical bars <term> → <term> (+|-) const Repetitions (0 or more) are placed inside braces { } <ident> → letter {letter|digit} CSCI18 - Concepts of Programming languages

BNF and EBNF CSCI18 - Concepts of Programming languages

Semantics BNF in the form of CFG is used to describe the syntax of a programming language It can not describe the semantics (meaning) of the programming language statements, expressions, etc.  There are two categories of semantics:  Static semantics: semantic rules that can be checked during compile time (i.e., prior to runtime). As an example, variables in a program must be "declared" before they are referenced.  Dynamic semantics: semantic rules that apply during the execution of a program.  CSCI18 - Concepts of Programming languages

Attribute Grammars Attribute grammars (AGs) have additions to CFGs to carry some semantic info on parse tree nodes Primary value of AGs: Static semantics specification Compiler design (static semantics checking) CSCI18 - Concepts of Programming languages

Attribute Grammars : Definition Def: An attribute grammar is a context-free grammar G = (S, N, T, P) with the following additions: For each grammar symbol x there is a set A(x) of attribute values Each rule has a set of functions that define certain attributes of the nonterminals in the rule Each rule has a (possibly empty) set of predicates to check for attribute consistency CSCI18 - Concepts of Programming languages

Attribute Grammars: Definition Let X0  X1 ... Xn be a rule Functions of the form S(X0) = f(A(X1), ... , A(Xn)) define synthesized attributes Functions of the form I(Xj) = f(A(X0), ... , A(Xn)), for i <= j <= n, define inherited attributes Initially, there are intrinsic attributes on the leaves CSCI18 - Concepts of Programming languages

Attribute Grammars: An Example Syntax <assign> -> <var> = <expr> <expr> -> <var> + <var> | <var> <var> A | B | C actual_type: synthesized for <var> and <expr> expected_type: inherited for <expr> CSCI18 - Concepts of Programming languages

Attribute Grammar (continued) Syntax rule: <expr>  <var>[1] + <var>[2] Semantic rules: <expr>.actual_type  <var>[1].actual_type Predicate: <var>[1].actual_type == <var>[2].actual_type <expr>.expected_type == <expr>.actual_type Syntax rule: <var>  id Semantic rule: <var>.actual_type  lookup (<var>.string) CSCI18 - Concepts of Programming languages

Attribute Grammars (continued) How are attribute values computed? If all attributes were inherited, the tree could be decorated in top-down order. If all attributes were synthesized, the tree could be decorated in bottom-up order. In many cases, both kinds of attributes are used, and it is some combination of top-down and bottom-up that must be used. CSCI18 - Concepts of Programming languages

Attribute Grammars (continued) <expr>.expected_type  inherited from parent <var>[1].actual_type  lookup (A) <var>[2].actual_type  lookup (B) <var>[1].actual_type =? <var>[2].actual_type <expr>.actual_type  <var>[1].actual_type <expr>.actual_type =? <expr>.expected_type CSCI18 - Concepts of Programming languages

Semantics There is no single widely acceptable notation or formalism for describing semantics Several needs for a methodology and notation for semantics: Programmers need to know what statements mean Compiler writers must know exactly what language constructs do Correctness proofs would be possible Compiler generators would be possible Designers could detect ambiguities and inconsistencies CSCI18 - Concepts of Programming languages

Operational Semantics Describe the meaning of a program by executing its statements on a machine, either simulated or actual. The change in the state of the machine (memory, registers, etc.) defines the meaning of the statement To use operational semantics for a high-level language, a virtual machine is needed CSCI18 - Concepts of Programming languages

Denotational Semantics Based on recursive function theory The most abstract semantics description method Originally developed by Scott and Strachey (1970) CSCI18 - Concepts of Programming languages