Physics Results of Belle and Prospects for Belle II

Slides:



Advertisements
Similar presentations
B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Overview of (selected) Belle and BaBar results B. Golob, Belle Collaboration University.
Advertisements

Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
23, June, 2005Beauty2005, Assisi, Italy Electroweak Penguin decays at Belle Akimasa Ishikawa KEK.
Measurements of the angle  : ,  (BaBar & Belle results) Georges Vasseur WIN`05, Delphi June 8, 2005.
Measurements of the angles of the Unitarity Triangle at B A B AR Measurements of the angles of the Unitarity Triangle at B A B AR PHENO06 Madison,15-18.
H b and other  (5S) results at Belle D. Santel Rencontres de Blois June 1, Introduction to h b and  (5S) 2.Search for the h b 3. Observation of.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
16 May 2002Paul Dauncey - BaBar1 Measurements of CP asymmetries and branching fractions in B 0   +  ,  K +  ,  K + K  Paul Dauncey Imperial College,
Pakhlov Pavel (ITEP, Moscow) Why B physics is still interesting Belle detector Measurement of sin2  Rare B decays Future plans University of Lausanne.
New  (5S) decays from Belle George W.S. Hou (NTU) NTHU HEP, 11/08/ Observation of Anomalous e + e    (nS) h + h  Production at  (5S) Energies.
1 B Physics at CDF Junji Naganoma University of Tsukuba “New Developments of Flavor Physics“ Workshop Tennomaru, Aichi, Japan.
1 CP violation and the Belle Experiment Jin Li USTC 2010.
Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)
V B-factory constraints on possible New Physics at the LHC S.L. Olsen U of Hawai’i 高能所 北京 Academia Sinica (Taipei) June 12, 2007.
Moriond EW, 3 Mar 2008Tagir Aushev (EPFL, ITEP)1  B → K S  0  0  B → K S K S  B → K S  0  B → D *+ D *-  B → a 1 , a 1 K, b 1 , b 1 K...  
1. Outline 2 Dr. Prafulla Kumar Behera, IIT Madras 9 th June 2015.
Belle results relevant to LHC Pheno-07 May 8, 2007 Madison Wisc. S.L. Olsen U of Hawai’i.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
Summary of Recent Results on Rare Decays of B Mesons from BaBar for the BaBar Collaboration Lake Louise Winter Institute Chateau Lake Louise February.
Takeo Higuchi Institute of Particle and Nuclear Studies, KEK for the Belle collaboration Oct 14, 2003; Pittsburgh, PA Takeo Higuchi, KEK BEAUTY2003 Hot.
P Spring 2003 L14Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
CP Violation and CKM Angles Status and Prospects Klaus Honscheid Ohio State University C2CR 2007.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
Philip J. Clark University of Edinburgh Rare B decays The Royal Society of Edinburgh 4th February 2004.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
July 15-19, 2003 Lattice 2003, Tsukuba, Ibaraki, Japan Masashi Hazumi (KEK) 1 Masashi Hazumi (KEK) for the Belle collaboration Present and Future of KEK.
QCD 与强子物理研讨会, 2010 年 8 月 4 - 10 日,威海 Prospects of Flavor Physics at the LHC 高原宁 清华大学高能物理研究中心 2010/8/61Y. Gao, Prospects of flavor physics at the LHC.
Time-dependent CP Violation (tCPV) at Belle -- New results at ICHEP Masashi Hazumi (KEK) October. 10, 2006.
Christoph Schwanda1 The Belle B Factory Past, present and future Christoph Schwanda, Innsbruck, Oct-18, 2006.
Current Status of Physics & Future KEKB NP Higgs SM Figure by Dr. Hayasaka (Nagoya Univ.) June 20, 2007 Supersymmetry in Hokkaido Univ.
1 Future B Physics Program at KEK BNM 2008 (24-Jan, Atami) Y.Sakai, KEK based on slides by Masa Yamauchi, KEK (KEKB upgrade strategy) - KEK’s Roadmap -
Direct CP violation in    decays at Belle Yuuj i Unno Hanyang university (For the Belle Collaboration) June 16 th -21 st, Seoul, Korea.
Υ Strange Beauty and other Beasts from Υ(5S) at Belle Rencontres de Moriond/Electroweak, March, 2010 Υ (5S) ResonanceΥ (5S) Resonancemotivationdata recent.
Hot Belle George W.S. Hou (NTU) FPCP08, 5/5/08 1 Hot Topics from Belle May 5, 2008, NTU, Taipei.
Round table Physics at Super-  -c factory 1 Super-  -c factory, BINP, Sep 2008 Some starting points for discussion Super-  -c factory.
CP VIOLATION at B-factories A.Bondar (Budker INP,Novosibirsk) Measurements of large CPV in b  c c s modes Search for New Physics: CPV in b  s penguin.
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
 3 measurements by Belle Pavel Krokovny KEK Introduction Introduction Apparatus Apparatus Method Method Results Results Summary Summary.
CP violation at B-factoris Introduction  1 /   2 /   3 /  Vub, D mixing, Bs Conclusion Pavel Krokovny KEK, Tsukuba, Japan KEK.
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
1 Rare Bottom and Charm Decays at the Tevatron Dmitri Tsybychev (SUNY at Stony Brook) On behalf of CDF and D0 Collaborations Flavor Physics and CP-Violation.
Andrzej Bożek nz11Highlights of the Belle Experiment SAB Review Selection of the most important Belle results since last SAB review (2005):  B 0.
Beauty2005, 6/20/05, R.Itoh1 Measurements of  1 (  ) at Belle Ryosuke Itoh, KEK representing The Belle Collabration Beauty 2005 Assisi, Perugia, Italy.
3/13/2005Sergey Burdin Moriond QCD1 Sergey Burdin (Fermilab) XXXXth Moriond QCD 3/13/05 Bs Mixing, Lifetime Difference and Rare Decays at Tevatron.
B. Golob, D Mixing & CPV 1/25Frontier of Particle Physics 2010, Hu Yu Village, Aug 2010 Boštjan Golob University of Ljubljana/Jožef Stefan Institute &
A. Drutskoy, University of Cincinnati B physics at  (5S) July 24 – 26, 2006, Moscow, Russia. on the Future of Heavy Flavor Physics ITEP Meeting B physics.
Synergy between Energy and Luminosity Frontiers (Summary) 1 Y.Sakai (KEK)
1 Koji Hara (KEK) For the Belle Collaboration Time Dependent CP Violation in B 0 →  +  - Decays [hep-ex/ ]
CP Violation in B decays 1 Y.Sakai KEK Jan. 9, 2005  experimental review  KEKB/BellePEP-II/BaBar.
 1 measurements with tree-level processes at Belle O. Tajima (KEK) Belle collaboration ICHEP06 July 28, 2006.
Update on Measurement of the angles and sides of the Unitarity Triangle at BaBar Martin Simard Université de Montréal For the B A B AR Collaboration 12/20/2008.
B s Mixing Parameters and the Search for CP Violation at CDF/D0 H. Eugene Fisk Fermilab 14th Lomonosov Conference Moscow State University August ,
15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University.
CP VIOLATION (B-factories) P. Pakhlov (ITEP). 2 The major experiments to explore CP Kaon system: Indirect CP Violation Direct CP Violation Not useful.
Chunhui Chen, University of Maryland PASCOS CP Violation in B Physics Chunhui Chen University of Maryland The 12 th International Symposium on Particles,
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
New  (5S) decays from Belle George W.S. Hou (NTU) SLAC Expt ’ l, 11/15/ Observation of Anomalous e + e    (nS) h + h  Production at  (5S) Energies.
Beauty and charm at the LHC, Jeroen van Tilburg, FOM Veldhoven 2014 Jeroen van Tilburg Beauty and charm at the LHC: searches for TeV scale phenomena in.
1 Belle & BaBar “Competition” Y.Sakai, KEK ASEPS 24-March-2010.
BNM Summary of Present Experimental Results 13-Sep-2006, Y.Sakai (KEK) Based on ICHEP06 results (highlights) CKM:  1 ( & b  s),  2,  3,... Decays.
Measurements of  1 /  Flavor Physics and CP Violation 2010, May 25, 2010, Torino, Italy, K. Sumisawa (KEK)
New Physics Prospects in Mixing and CP Violation at Belle II
New Result on (5S) Decay from Belle
CKM Status In this lecture, we study the results summarized in this plot. November 17, 2018 Sridhara Dasu, CKM Status.
Searching for SUSY in B Decays
Yasuhiro Okada (KEK/Sokendai) October 18, 2007
D0 Mixing and CP Violation from Belle
KEKB_Ring_3km_circumference
SuperKEKB Proto-collaboration
Presentation transcript:

Physics Results of Belle and Prospects for Belle II Y.Sakai KEK Reference for physics prospects Physics at Super B Factory [arXiv:1002.5012] SuperB Progress Report [arXiv:.10081541]

Physics at B factory B physics (~1.1nb) - CP violation & CKM - Rare decays Charm physics (~1.3 nb) t physics (~0.9nb) two-photon processes New Resonance - ordinary & exotics B Y(4S) _ B c t- _ c t- Variety of Physics ! Complement/Cooperative with t/Charm factory !

Goal/Milestones of B-factory Step1 2001 summer ! Discovery of CPV in B decays 2008 Step2 Precise test of KM and SM Step3 Search for NP Hints of NP Establish procedures (SUSY, Extra-dim…) SuperB-factory ~50 times more data (higher luminosity)

CP Violation Difference between particle & anti-particle (matter & anti-matter) Universe: almost “matter” only (no anti-matter) Big-Bang  N(particles) = N(anti-particles) Sakhalov’s 3 conditions (1967): 1. baryon number violation 2. CP violation 3. existence of non-equiblium CPV is a key for Existence of Universe & us ! Andrei Sakharov (1921-1989)

Kobayashi-Maskawa: CPV CPV: due to a complex phase in the quark mixing matrix CKM matrix dj uk W- Vkj Unitarity triangle * Wolfenstein representation Vud Vub 2 (a) * Vtd Vtb 3 (g) 1(b) Vcd Vcb *

KEKB Accelerator 8 GeV e- x 3.5 GeV e+: 22mrad crossing KEKB Belle ~1 km in diameter Mt. Tsukuba KEKB Belle e+ source Ares RF cavity Belle detector 8 GeV e- x 3.5 GeV e+: 22mrad crossing Lpeak = 2.11x1034 Integ. Lum. ~1040 fb-1

Peak Luminosity 2.11x1034 1.21x1034 >1fb-1/day >1 M BB _

Data at B-factories (have to switch to new units, 1 ab-1) (fb-1) _ 772MBB “Intense Analysis Phase” _ 487MBB

charged particle tracking Muon / KL identification Belle Detector , p0 reconstruction e+-, KL identification K/p separation Aerogel Cherenkov Counter n = 1.015~1.030 Electromagnetic Calorimeter CsI(Tl) 16X0 3.5 GeV e+ TOF counter K/p separation charged particle tracking 8.0 GeV e- Central Drift Chamber momentum, dE/dx 50-layers + He/C2H6 B vertex Muon / KL identification Si Vertex Detector 4-layer DSSD KL m detector 14/15 layer RPC+Fe

The Belle Collaboration Nagoya U. Nara Women’s U. National Central U. National Taiwan U. National United U. Nihon Dental College Niigata U. Osaka RCNP Osaka City U. Panjab U. Peking U. PNNL Riken Saga U. USTC Seoul National U. Shinshu U. Sungkyunkwan U. U. of Sydney Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Metropolitan U. Tokyo U. of Agri. and Tech. Toyama Nat’l College Torino Wayne S.U. VPI Yonsei U. BINP Bonn U. Charles U. Chiba U. U. of Cincinnati Fu-Jen C.U. Giessen U. Gyeongsang Nat’l U. Goethingen Hanyang U. U. of Hawaii Hiroshima Tech. IHEP, Beijing IHEP, Moscow IHEP, Vienna Indiana U. ITEP Kanagawa U. KEK Karlsruhe U. KISTI Korea U. Krakow Inst. of Nucl. Phys. Kyungpook Nat’l U. EPF Lausanne Jozef Stefan Inst. / U. of Ljubljana / U. of Maribor Luther U. of Melbourne MPI 15 countries, ~60 institutes, ~400 collaborators

CPV in B0 decays = J/y B0 B0 K0 _ _ V*cb c b t b d s d V*td _ A fcp B0 - Sanda Bigi Carter = B0 fcp mixing Decay: A V*td _ t d b w B0 _ d b c s w B0 J/y K0 V*cb Initial: B0 B0 _ Interference Direct decay Mixing + Decay Oscillation Weak Phase difference frequency: Dmd (BH, BL) Decay-time dependent CPV

CPV in B0 decays = 2(a) 3(g) 1(b) _ A fcp B0 A - Sanda Bigi Carter mixing Decay: A mixing 1(b) 2(a) 3(g) Vtd Vtb Vcd Vcb Vud Vub * -hf sin2f1 sin(Dmd Dt) _ Dt (decay time)[ps] B0 B0 Prob. ACP sin2f1 Decay (hf : CP eigenvalue)

Time-dep CPV Measurement Flavor-tag (B0 or B0 ?) J/(f,h’) KS e e z t=0 fCP Vertexing Reconstruction eeff ~30% sDt~140ps B0 B0-tag Dt  z/cbg fit Extract CPV bg=0.425 (KEKB) 0.56 (PEP-II) same analysis method applied for all modes

sin2f1 : CPV observation First observed CPV in B (2001) 1137 events B0 tag _ 1137 events B0 tag 2001 Asymmetry 31M BB First observed CPV in B (2001)

sin2f1 : Precision meas. 14000 signals 2006 535M BB 3.4% error ! _ 0.6870.0280.012 0.670  0.023 B0 tag _ 14000 signals 2006 535M BB 3.4% error !

Measurement of CKM Complete test of KM & SM 2 3 1 Over constraint ! Determination of UT Complete test of KM & SM B pp, rp, rr * b u l-n * Vtd Vtb Vud Vub 2 B0-mixing (Dmd) B p/r l n (a) B rg 3 (g) 1 (b) B-  DcomK- * Vcd Vcb B0 D(*)+p- B0  (cc)K(*)0 b  c l-n B0  D*+D(*)-(K) B  D(*)l n Over constraint ! B experiments can provide all measurements !

Verification of KM for CPV All consistent CPV: caused by a single phase of CKM matrix Verified by B-factory experiments 2008 Physics Nobel Prize

Next Challenge New Source of CPV should exists In spite of Great Success of SM, there must be New Physics beyond SM at High Energy scale (SM is valid effective theory at current E-scale) Observed CPV in SM is not enough to explain matter dominance of Universe [>O(1010)] ! New Source of CPV should exists (beyond SM) One of Next important goals of Flavor Physics Energy Frontier Note) NP effects appear in Flavor Physics in various way !

Search for New Physics SuperKEKB KEKB CPV in B Rare B decays provide Powerful tool for Search NP ( New Phase ) [ bsqq tCPV] Rare B decays excellent opportunities for NP search Loop diagram Penguins [bs(d) g, bs(d) l+l-] Key Decays involving t ( H) ANP ~ ASM (small/forbidden) t Decays (Lepton Flavor Violation = NP) : B-factory = t-factory Establish analyses Hint of NP SuperKEKB KEKB

NP : Precise CKM Still ~10% room for NP 50ab-1

- New Source of CPV: b  sqq X b s d t b f,h’.. f,h’.. s d - KS KS _ B0 + KS KS Vts Vtb * SM: bs Penguin phase = (cc) K0 - + New Physics with New Phase Sbs ¹ Sbc , ADCP can ¹ 0 _ “b  ccs: sin2f1” (SM reference) deviation 21

Summary of New CPV search B0 J/yK0  Reference point of SM No clear deviation seen in all modes (1~2s) New CPV effect can be seen with much larger data Super B-factory

Compelling measurement in a clean mode SuperKEKB prospect B  fK0 at 50/ab with ~present WA values MC J/K0 fK0 bs This would establish the existence of a NP phase in bs penguins. δ(Sbs) ~ 0.012 @ 50ab–1 Prospect Compelling measurement in a clean mode 23

Kπ Puzzle in B⁰/B⁺ CP Violation B⁰  K⁻π⁺ B⁰  K⁺π⁻ B⁻  K⁻π⁰ B⁺  K⁺π⁰ B⁰ B⁺ _ Expected to be same DAKp = A(K+p−) − A(K+p0) = −0.147 ± 0.028 S.-W. Lin et al. (The Belle collaboration), Nature 452, 332 (2008). 5.3σ deviation  Hint of NP ?

Solutions to the DAKp Puzzle See Nature commentary by Michael Peskin T T Expectation from current theory T & P are dominant  DAKp ~ 0 P C PEW T P Enhancement of large PEW  New physics Enhancement of large C with large strong phase to T  strong inter. !? Chiang et. al. 2004 Li, Mishima & Sanda 2005 Yoshikawa 2003; Mishima & Yoshikawa 2004; Buras et. al. 2004, 2006; Baek & London 2007; Hou et. al. 2007; Feldmann, Jung & Mannel 2008 Can this issue be resolved in a model-independent way by experiment ?

Model-indep. Sum Rule A(K0p0) B →Kp A(K0p+) Sum rule proposed by: HFAG, ICHEP08 dA(K+p0) sum rule A(K0p+) measured (HFAG) expected (sum rule) Sum rule proposed by: M. Gronau, PLB 627, 82 (2005); D. Atwood & A. Soni, Phys. Rev. D 58, 036005(1998). 26

SuperKEKB prospect Belle II, 50 ab-1 Important to measure A(K0p0) dA(K+p0) Important to measure A(K0p0) precisely sum rule A(K0p+) B →K0p0 : main syst. uncertainty full systematics treated as non-scaling (conservative) 27

Charged Higss Hunting B-Factory: Variety of Modes sensitive to Charged Higgs Some are only possible at B-Factory

Inclusive b  s g SM 657M BB Fully Inclusive measurement Data Background subtracted

b  s g Summary

H+ Search: B+ +  (Decays with Large Missing Energy) Sensitivity to new physics from charged Higgs The B meson decay constant, determined by the B wavefunction at the origin (|Vub| taken from indep. measurements.)

B->ν : Experimental Challenge (4S) B- B+ n e+ ne B++, +e+e B-X Always > 2 neutrinos appear in B  t n decay _ Signature : 1 track +invisible Experimental Challenge !

B->ν : Experimental Challenge (4S) B- B+ n e+ ne B++, +e+e B-X Tag-side: Full reconstruction Also for B  D(*)tn B  Knn _ Can be measured only by B-Factory !

B->ν Results 2.8s

B  D(*)tn B  D* tn : Lepton (t) polarization info. Expected B ~ 1.4% in SM (large) But, large background (D*(**)ln, D*X) [e.g. D.S.Hwang EPJ C14,271(2000)] Always involve > 2 n (Missing E):

B  D(*)tn Results First Observation ! 657M BB B0  D*-t+n [PRL 99, 191807(2007)] First Observation ! [PRD 82, 0720005(2010)]

B  D(*)tn Summary

Constraints on charged Higgs U. Haisch, hep-ph/0805.2141; ATLAS curve added by Steve Robertson Also see (MSSM),D. Eriksson,F.Mahmoudi and 0.Stal

- D0-D0 Mixing Quark level: Box diagram SM box: O(10-9) (~ B0-mixing) SM box: O(10-9) +Long distance: O(10-3~10-2) x=Dm/G y=DG/2G Large mixing, |x|>>|y|, CPV  New Physics ! Only mixing with up-type quark complementarity to down-type FCNC

D0-mixing : yCP Decays to CP eigenstates D0 → K+K- / p+p- “lifetime” difference First Evidence (2007) ! PRL 98, 211803 (2007), 540fb-1

D0-mixing : Wrong sign D0  K-p+ : normal decay D0  K+p- : Mixing Signal But, two sources need decay-time analysis to extract D0-D0 mixing _ “Wrong Sign” 400fb-1 PRL 96, 151801 (2006) (0,0) CL 96.1% BaBar, PRL 98, 211802 (2007), 384fb-1 1s 2s 3s 4s 5s likelihood contours 3.9s CDF, PRL 100, 121802 (2008), 1.5fb-1

D0-mixing : t-dep. Dalitz D0  KSp+p- t most precise x meas. y (%) x (%) Belle, PRL 99, 131803 (2007), 540fb-1

D0-mixing : Summary HFAG x~y~1% ~ SM limit ! Mixing parameters global fit to observables, only KK/pp, Kp and Kspp projected sensitivities included (no external constraints, e.g. dKp)

D0-mixing : prospect Mixing parameters 1 s @ 50 ab-1 1 s @ 50 ab-1 A.G. Akeroyd et al., arXiv:1002.5012 Mixing parameters global fit to observables, only KK/pp, Kp and Kspp projected sensitivities included (no external constraints, e.g. dKp)

Constraints from D0-mixing 4th generation of fermions R-parity violating SUSY c u b’ W+ W- D0 Vcb’ Vub’* D0 |Vub’Vcb’| mb’ [GeV] allowed area lines of constant |x| R couplings [GeV] allowed area lines of constant |x| E. Golowich et al., PRD76, 095009 (2007) E. Golowich et al., PRD76, 095009 (2007)

Hints/Sensitive to NP ….. CPV in b  s Penguin? A(B  Kp) Puzzle Forwad-Backword Asy,.B  K*ℓ+ℓ− C7=−C7SM SM CKM Unitarity Triangle Large D0-mixing fL(B  VV) ≠ 1 Theoretical calculations using Vub, Dmd,eK Direct measurement tree ….. penguin

Identification of NP type Identify by the pattern of deviations from SM SUSY models mSUGRA MSSM+R SU(5)+R U(2) FS degenerate non-degenerate ACP(s) ✔ S(K*) S() S(KS) S(BsJ/ ) e ?  e … Measurements … ✔: deviation from SM [based on T.Goto et.al. PRD77, 095010(2008)]

Physics at Super B-factory is “DNA chip of New Physics” + LHC,…  D. Hitlin

Energy Frontier vs Flavor Physics Direct Production by High Energy Coll. Virtual Production via Quantum Eff. q ~ s p p b c ~ g g ~ q ~ c ~ ~ n q _ q l- Tunnel effect Luminosity Frontier Energy Frontier Diagonal terms Off-diagonal terms Higher Energy Scale Can be searched (even if LHC finds no New Physics)

(Luminosity Frontier) LHC observes NP in TeV scale Complementarity of Flavor Physics (Luminosity Frontier) & Energy Frontier Identify NP type SUSY, Extra Dim. Little Higgs,..? Mechanism of Symm. Breaking CPV via NP Era of NP Exploration SU(5)+R degenerate MSSM+R degenerate SU(5)+R non-degenerate New Physics Belle II = Compass MSSM+R non-degenerate U(2)FS Higgs Standard Model top Energy Frontier Luminosity Frontier W, Z Map S.Nishida

Search by Flavor Physics in Dark In case of No New Physics in TeV scale FCNC process currently gives various limits on NP ⇒ further explore NP Search by Flavor Physics in Dark SU(5)+R degenerate MSSM+R degenerate SU(5)+R non-degenerate New Physics Belle II = Compass MSSM+R non-degenerate U(2)FS Higgs Standard Model top Energy Frontier Luminosity Frontier W, Z Map S.Nishida

Comparison with LHCb Sta Complementary !

Summary SuperB-factory Discovery of CPV in B decays Step1 2001 summer ! Discovery of CPV in B decays 2008 Step2 Precise test of KM and SM Step3 Search for NP Hints of NP Establish procedures (SUSY, Extra-dim…) LHC: New particle, masses SuperKEKB: couplings Understand NP need Both SuperB-factory ~50 ab-1 data (L ~1036cm-2s-1 )

Discovery of New Resonances “Exotic Hadrons” X(3915), Y(4350) Charged Yb Z(4050),Z(4250) Y(4660) Y(4008) Z(4430) d c u u c Integrated Luminosity DsJ(2860) DsJ(2700) Xcx(3090) Y(4320) Tetraquark cluster cc2’ X(3940), Y(3940) Neutral c g Y(4260) u c Sc* baryon triplet X(3872) Hybrid D0*0 & D1*0 DsJ(2317/2460) hc’ & e+e-cccc

SM CPV: too small CPV Phase WMAP Too Small in SM masses too small ! Why? Jarlskog Invariant in SM (need 3 generation in KM) Normalize by T ~ 100 GeV masses too small ! is common (unique) area of triangle in SM CPV Phase [W.S.Hou]

CPV in B0 decays (General) Vtd Vtb Vcd Vcb Vud Vub * B0 Dt made by H. Miyake = S sin(DmDt) + A cos (DmDt) A CP Mixing induced CPV Direct CPV A B0 fcp = fcp B0 mixing - B0 q/p A B0

f1 Measurement J/y B0 B0 K0 2(a) 3(g) 1(b) _ _ * Vud Vub Vtd Vtb c s w B0 J/y K0 _ t d b w B0 V*cb V*td V*td 1(b) 2(a) 3(g) Vtd Vtb Vcd Vcb Vud Vub * = - xcpsin2f1 sin(DmDt) +A cos (DmDt) A CP Mixing induced CPV Direct CPV xCP : CP eigenvalue A @ 0 First observed CPV in B (2001)

A(K0p0) measurement BKS 0 Signal +1st BKL 0 Signal 2855257 (3.7σ incl. systematics) These modes will be very difficult at a hadron machine 3-d fit gives a signal of 65737 events Use flavor tagging to distinguish B0 and anti-B^0

B->ν : Tension measurements Indirect fit prediction sin2f1

and more…