A discovery of the Di-baryon state with Wasa-at-COSY

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
“Exotic” hadron-hadron S-wave Interaction Bing-song Zou IHEP, Beijing.
1 5-quark components in baryons and evidence at BES Bing-Song Zou Institute of High Energy Physics Beijing.
Study of few-body problems at WASA Wasa-at-Cosy. Content General overview General overview –  decays – dd   0 –  -mesic helium The ABC effect The.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Mikhail Bashkanov Dibaryons at COSY Wasa-at-COSY.
1 Baryonic Resonance Why resonances and why  * ? How do we search for them ? What did we learn so far? What else can we do in the.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Low-x Wshop, , Prague Jan Hladký, Exotic Anti-Charm Baryon State 1 Evidence for a Narrow Exotic Anti-Charmed Baryon State *) Jan Hladký, Institute.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
Photodisintegration of Few-Body Nuclei Ron Gilman Rutgers / Jefferson Lab What have we learned? What might we learn? Jefferson Lab User Group The Next.
Exclusive Production of Hadron Pairs in Two-Photon Interactions Bertrand Echenard University of Geneva on behalf of the LEP collaborations Hadronic Physics.
The role of anomalous triangle singularity in the understanding of threshold phenomena XVI International Conference on Hadron Spectroscopy September 13-18,
Two-pion production in Delta-Delta region – approaching the ABC puzzle by exclusive and kinematically complete measurements. T.Skorodko, University Tuebingen.
Hadrons in the Nuclear Medium. I. QCD dynamics of Hadron-Hadron Interaction I. QCD dynamics of Hadron-Hadron Interaction IV. Protons in the Superdense.
Mikhail Bashkanov Encounters with Di-Baryons from the ABC-effect to a Resonance in the Proton-Neutron System Wasa-at-COSY.
Kraków, June 9th, 2015 Exotic quarkonium-like states Andrzej Kupsc Positronium – quarkonia XYZ studies at BESIII Zc states: Zc 0± (3900), Zc 0± (4020)
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
New Interpretation of the ABC Effect in Two-Pion Production in NN collisions Maria Platonova Lomonosov Moscow State University The 22 nd European Conference.
1 On extraction of the total photoabsorption cross section on the neutron from data on the deuteron  Motivation: GRAAL experiment (proton, deuteron) 
Hadronic Resonances Evgeni Kolomeitsev, Matej Bel University.
X(3872) production in high energy collisions University of São Paulo F.S. Navarra Introduction : exotic hadrons Production in pp and AA XIII International.
WWND 2011 Michael Weber for the HADES collaboration Inclusive e + e - pair production in p+p and p+Nb collisions at E = 3.5 GeV Introduction.
June 25, 2004 Jianwei Qiu, ISU 1 Introduction to Heavy Quark Production Jianwei Qiu Iowa State University CTEQ Summer School on QCD Analysis and Phenomenology.
Nstars: Open Questions Nstars: Open Questions L. Tiator, Institut für Kernphysik, Universität Mainz  Introduction  Roper and S 11  the role of the D.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Nucleon resonances via H,D(  ) reactions GeV  Experiments at GeV  Hall at LNS : GeV  Hall, 2003: STB tagger II, SCISSORS II, STB special.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
BLINDBILD Resonance Multiplets in the Two-Baryon System --- Dibaryons Revisited MesonNet Meeting Prague, June , 2013 Heinz Clement Fachbereich Physik.
Pentaquarks: Discovering new particles
Christoph Blume University of Heidelberg
The d* dibaryon structure and the hidden color channel effect Jia-lun Ping, Hong-xia Huang Dept. of Physics, Nanjing Normal University Fan Wang Dept. of.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
U-spin and the Radiative decay of Strange Baryons K. Hicks and D.Keller EM Transition Form Factor Workshop October 13, 2008.
Stephen Lars Olsen Seoul National University February 10, 2014 A New Spectroscopy of Hadrons High-1 Gangwando.
Evidence for a new resonance S *(1380) with J P =1/2  JiaJun WU In collaboration with S. Dulat and B. S. ZOU.
CELSIUS-WASA,WASA-at-COSY: two-pion production in NN collisions T. Skorodko, Physikalisches Institut, Univ.Tubingen.
Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen.
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
The pp→pp  0  0 reaction and its limiting case, the fusion to quasibound, in search of ABC effect T. Skorodko, University Tuebingen for CELSIUS-WASA.
Double-Pionic Fusion in Nucleon Collisions on Few Body Systems - The ABC Effect and its Possible Origin Wasa-at-Cosy Celsius Wasa.
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
The study of pentaquark states in the unitary chiral approach
Three-body hadronic molecules.
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Remarks on the hidden-color component
Photoproduction of K* for the study of L(1405)
The dibaryon d* in quark models
Dibaryon production and structure
N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)
Dibaryons at CLAS Mikhail Bashkanov.
d*, a quark model perspective
On a Search for -Mesic Nuclei at MAMI-C
Shedding light on Hexaquarks
手征夸克模型的一些应用 钟显辉 湖南师范大学物理与信息科学学院.
Wasa-at-Cosy The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin.
Helicity dependence of g n ® Nπ(π) and the GDH integral on the neutrom
The np -> d p0 reaction measured with g11 data
Hexaquarks under the microscope
New States Containing Charm at BABAR
Presentation transcript:

A discovery of the Di-baryon state with Wasa-at-COSY Mikhail Bashkanov

Types of particles/resonances Meson Baryon white color anticolor Mikhail Bashkanov "Dibaryons"

Baryon-Baryon molecule Meson-Baryon molecule Possible particles Tetraquark Meson-Meson molecule Hexaquark Baryon-Baryon molecule Pentaquark Meson-Baryon molecule Mikhail Bashkanov "Dibaryons"

Deuteron to Deltaron I(Jp) = 0(3+) I(Jp) = 0(1+) Threshold p n Δ Δ 2.2 MeV p n 80 MeV Δ Δ deuteron d*

d*(2380) The Discovery

Total cross section pn  d00 “d* resonance” 70 MeV  NN*(1440) P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

Angular distribution in the peak J=3 J=1 P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

The extracted properties of the new particle 𝑑 ∗ (2380) pn  dibaryon  DD  dp0p0 Δ d π p n I(Jp) = 0(3+) 𝑴 𝒅 ∗ =𝟐.𝟑𝟖 𝑮𝒆𝑽≈𝟐 𝑴 𝚫 −𝟖𝟎 𝑴𝒆𝑽 𝚪 𝒅 ∗ =𝟕𝟎 𝐌𝐞𝐕≪ 𝚪 𝚫𝚫 =𝟐𝟒𝟎 𝑴𝒆𝑽 Mikhail Bashkanov "Dibaryons"

Only 𝒅𝝅 𝟎 𝝅 𝟎 ?

Isospin relations I=1   I=0

Total cross section pN  d 𝒅 𝝅 + 𝝅 − 𝟏 𝟐 ∙𝒅 𝝅 + 𝝅 𝟎 𝟐∙𝒅 𝝅 𝟎 𝝅 𝟎 P. Adlarson et. al Phys. Lett. B721 (2013) 229

Only with deuteron?

From fusion to free case pn  d*  DD  dpp pn  d*  DD  NNpp Δ π p n N Δ d π p n Fäldt & Wilkin, PLB 701 (2011) 619 Albaladejo & Oset, Phys.Rev. C88 (2013) 014006

pn  pn00 d* Conventional process +d* d* Conventional process 𝒔 [𝑮𝒆𝑽] 𝒔 [𝑮𝒆𝑽] P. Adlarson et al., Phys.Lett. B743 (2015) 325-332 

Dibaryon non-fusion decays 𝑝𝑝 𝜋 − 𝜋 0 𝑝𝑛 𝜋 0 𝜋 0 𝑝𝑛 𝜋 + 𝜋 − d* d* PRC 88 (2013) 055208 PLB 743 (2015) 325 HADES  arXiv:1503.04013

Dibaryon hadronic decays PRL 106 (2011) 242302 PLB 721 (2013) 229 WASA data 𝑑 𝜋 0 𝜋 0 𝑑 𝜋 + 𝜋 − pn  d*(2380) 𝑝𝑛 𝑝𝑝 𝜋 − 𝜋 0 𝑝𝑛 𝜋 0 𝜋 0 𝑝𝑛 𝜋 + 𝜋 − PRL 112 (2014) 202301 PRC 90, (2014) 035204 d* PRC 88 (2013) 055208 PLB 743 (2015) 325 d* d*

The decay modes of the dibaryon Channel Publications d p0p0 M. Bashkanov et. al Phys.Rev.Lett. 102 (2009) 052301 P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011 P. Adlarson et. al Phys.Lett. B721 (2013) 229-236 d p+p- ppp0p- P. Adlarson et. al Phys. Rev. C 88, 055208 npp0p0 P. Adlarson et. al Phys.Lett. B743 (2015) 325 np A. Pricking, M. Bashkanov, H. Clement. arXiv:1310.5532 P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014) pn e+e- M. Bashkanov, H. Clement, Eur.Phys.J. A50 (2014) 107  3He pp M. Bashkanov et. al Phys.Lett. B637 (2006) 223-228 P. Adlarson et. al Phys. Rev. C 91 (2015) 1, 015201  4He pp P. Adlarson et. al Phys.Rev. C86 (2012) 032201 + activities from other groups M. Bashkanov, Stanley J. Brodsky, H. Clement Phys.Lett. B727 (2013) 438-442 Mikhail Bashkanov "Dibaryons"

Only with two pions?

From ΔΔ to pn decay pn  d*  DD  dpp pn  d*  pn pn  d*  DD  NNpp Δ π p n N Δ d π p n pn  d*  pn p n

Expectations p n SAID with resonance SAID A. Pricking, M. Bashkanov, H. Clement: arXiv:1310.5532

𝐴 𝑦 energy dependence at 83° SAID A. Pricking, M. Bashkanov, H. Clement: arXiv:1310.5532

𝐴 𝑦 energy dependence at 83° SAID New SAID solutions P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014)

Dimensionless partial wave amplitudes Pole at (𝟐𝟑𝟖𝟎±𝟏𝟎)−𝒊(𝟒𝟎±𝟓) 𝑴𝒆𝑽 Dimensionless partial wave amplitudes Im SP14 SP07 Re 𝜖 3 3 𝐷 3 3 𝐺 3 Resonance in the pn system P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014)

Argand plot P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014)

Argand plots 𝚪 𝒅 ∗ →𝒑𝒏 𝚪 𝐭𝐨𝐭 ≈𝟎.𝟏𝟐 𝚪 𝒅 ∗ →𝒑𝒏( 𝟑 𝑫 𝟑 ) ≈𝟏𝟎 𝐌𝐞𝐕 P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014) 𝚪 𝒅 ∗ →𝒑𝒏 𝚪 𝐭𝐨𝐭 ≈𝟎.𝟏𝟐 𝚪 𝒅 ∗ →𝒑𝒏( 𝟑 𝑫 𝟑 ) ≈𝟏𝟎 𝐌𝐞𝐕 𝚪 𝒅 ∗ →𝒑𝒏( 𝟑 𝑮 𝟑 ) ≈𝟏 𝐌𝐞𝐕

Molecule vs Hexaquark

Deuteron L=0 n p n p L=2 4 fm 0.9 fm ≈5% 6q configuration ≈0.15%

d*(2380) internal structure and the ABC effect Δ Δ 0.9 fm 0.9 fm 1.2 fm Δ Δ L=2 M. Bashkanov et al, arXiv:1502.07500

Deltaron vs Hexaquark L=0 Δ Δ Δ Δ L=2 ≈33% ≈66% ? 0.9 fm 0.9 fm 0.7 fm ≈66% 1.2 fm Δ Δ L=2 ? ≈5% 𝑜𝑓 ΔΔ 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 F. Huang et al,  arXiv:1408.0458

The family of dibaryons

Mirror dibaryon d* I(Jp) = 0(3+) I(Jp) = 3(0+) D D D D u u u d d d u u Freeman J. Dyson, Nguyen-Hue Xuong Phys. Rev. Lett. 13(1964) 815 Avraham Gal, Humberto Garcilazo Nucl. Phys. A928, (2014), 73

How many ways can you combine 6q? Isospin 𝑱 𝑷 = 𝟑 + 𝑱 𝑷 = 𝟎 + Strangeness 10 28  * **+* *  ++++ -- d* **+* **+

Z=+4 dibaryon isospin coefficients 𝜋 p I 𝑝𝑝→ 𝜋 − 𝜋 − 𝑑 4+ → 𝜋 − 𝜋 − Δ ++ Δ ++ →𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − 𝟏 𝟐∙ 𝟏 𝟏𝟓 𝟐 𝑝𝑝→ 𝜋 + 𝜋 − 𝑑 2+ → 𝜋 + 𝜋 − Δ ++ Δ 0 →𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − 𝟏 𝟏𝟓 𝟐 𝑝𝑝→ 𝜋 + 𝜋 + 𝑑 0 → 𝜋 + 𝜋 + Δ + Δ − →𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 −

𝑝𝑝→𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − dibaryon 𝑇 𝑝 =2.063 𝐺𝑒𝑉 𝑇 𝑝 =2.541 𝐺𝑒𝑉 𝑇 𝑝 =3.500 𝐺𝑒𝑉 𝑀 𝑝𝑝 𝜋 − 𝜋 − 𝑀 𝑝𝑝 𝜋 + 𝜋 +

𝑝𝑝→𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − data Preliminary 𝑀 𝑝𝑝 𝜋 + 𝜋 + 𝑀 𝑝𝑝 𝜋 − 𝜋 − 𝑇 𝑝 =2.541 𝐺𝑒𝑉 𝑇 𝑝 =2.063 𝐺𝑒𝑉 Preliminary 𝑀 𝑝𝑝 𝜋 + 𝜋 + 𝑀 𝑝𝑝 𝜋 − 𝜋 −

𝑝𝑝→𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − background+resonance p 𝜋 − 𝑵 ∗ Δ 𝜋 + p 𝜋 − 𝑵 ∗ 𝜋 + p 𝜋 −

𝑝𝑝→𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − data Preliminary 𝑀 𝑝𝑝 𝜋 − 𝜋 − 𝑀 𝑝𝑝 𝜋 + 𝜋 + 𝑻 𝒑 =𝟐.𝟎𝟔𝟑 𝑮𝒆𝑽 𝑀 𝑝𝑝 𝜋 − 𝜋 − 𝑀 𝑝𝑝 𝜋 + 𝜋 + Double-Roper Preliminary

Charge Z=+4 dibaryon upper limit 𝚪=𝟏𝟓𝟎 𝑴𝒆𝑽 𝚪=𝟏𝟎𝟎 𝑴𝒆𝑽 𝚪=𝟓𝟎 𝑴𝒆𝑽 Preliminary

NN vs ΔΔ Δ Δ p n Threshold ? p n Δ Δ 𝟏 𝑺 𝟎 Z=+4 66 keV 2.2 MeV 80 MeV 𝟏 𝑺 𝟎 Z=+4 Δ Δ p n Threshold 66 keV ? 2.2 MeV p n 80 MeV Δ Δ deuteron d*

How many ways can you combine 6q? Isospin 𝑱 𝑷 = 𝟑 + 𝑱 𝑷 = 𝟎 + Strangeness 10 28  * **+* *  ++++ -- d* **+* **+

d*(2380) SU(3) multiplet Jp = 3+  * *  𝑑 ∗ (2380) 𝑀 𝑑 ∗ − 𝑀 Δ + 𝑀 Σ ∗ < 𝑀 𝑑 𝑠 ∗ ≤ 𝑀 Δ + 𝑀 Σ ∗ * 𝑑 𝑠 ∗ (2.53−2.60) * 𝑑 𝑠𝑠 ∗ (2.68−2.76)  𝑑 𝑠𝑠𝑠 ∗ (2.82−2.90)

Strange Dibaryon 𝑝𝑛 10 𝑑 ∗ (2380) ΔΔ→𝑁𝑁𝜋𝜋 𝑁Λ 𝑑 𝑠 ∗ (2530-2600) Isospin 𝑝𝑛 **+* **+  * d* 10 𝑑 ∗ (2380) Strangeness ΔΔ→𝑁𝑁𝜋𝜋 𝑁Λ 𝑑 𝑠 ∗ (2530-2600) Δ Σ ∗ →(𝑁𝜋)(Λ𝜋)→𝑁𝑁𝜋𝜋𝜋

d*(2380) in photoproduction? R. Gilman and F. Gross nucl-th/0111015 (2001) d*  p T. Kamae, T. Fujita Phys. Rev. Lett. 38, Feb 1977, 471 d n H. Ikeda et al., Phys. Rev. Lett. 42, May 1979, 1321 I(Jp) = 0(3+) 𝐌=𝟐.𝟑𝟖 𝐆𝐞𝐕

The benchmark measurement Newly installed Edinburgh polarimeter p  d* d n Measure polarization of both proton and neutron ! M.H. Sikora, D.P. Watts et al, Phys.Rev.Lett. 112 (2014) 022501 Mikhail Bashkanov "Dibaryons"

Conclusion The very first dibaryon d*(2380) is established Mass Width Quantum numbers Main decay branches Structure: Hexaquark vs Molecule? No convincing signs for the mirror dibaryon (charge Z=+4) so far Size and shape of the conventional background? Mirror multiplet (28-plet) is likely to be unbound

Thank you

Z=+4 dibaryon 𝑑 4+ → Δ ++ Δ ++ →𝑝𝑝 𝜋 + 𝜋 + WASA, HADES 𝑑 4+ → Δ ++ Δ ++ →𝑝𝑝 𝜋 + 𝜋 + Δ π N N 𝜋 + p 𝜋 − 𝑝𝑝→ 𝜋 − 𝜋 − 𝑑 4+ → 𝜋 − 𝜋 − Δ ++ Δ ++ →𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − WASA, HADES

𝑝𝑝→𝑝𝑝 𝜋 + 𝜋 + 𝜋 − 𝜋 − dibaryon 𝑇 𝑝 =2.063 𝐺𝑒𝑉 𝑇 𝑝 =2.541 𝐺𝑒𝑉 𝑇 𝑝 =3.500 𝐺𝑒𝑉 𝑀 𝑝𝑝 𝜋 − 𝜋 − 𝑀 𝑝𝑝 𝜋 + 𝜋 +

Model calculations of the 𝑑 ∗ and 𝑑 4+ M(GeV) 1 2 3 4 5 exp 𝑑 ∗ 2.35 2.361 2.45 2.38 𝑑 4+ 2.833 unbound 2.69 2.40  Dyson-Xuong, PRL 13 (1964) 815 Mulders-Aerts-de Swart, PRD 21 (1980) 2653 Oka-Yazaki, PLB 90 (1980) 41. Mulders-Thomas, JPG 9 (1983) 1159. A. Gal, H. Garcilazo Nucl.Phys. A928 (2014) 73-88 

d*(2380) begins

Celsius WASA

The ABC-effect ==ΔΔ-FSI effect? pd3Heππ, Tp=0.89 GeV (I=0) M.Bashkanov et. al, Phys. Lett. B637 (2006) 223-228 The ABC-effect ==ΔΔ-FSI effect?

WASA 4 Detector 𝑝𝑛→𝒅𝒊𝒃𝒂𝒓𝒚𝒐𝒏→𝑑 𝜋 0 𝜋 0 π   d p n   π

First hints on d*(2380) at CELSIUS CELSIUS/WASA Phys.Rev.Lett.102, 052301 (2009)

CELSIUS to COSY The Discovery