High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,

Slides:



Advertisements
Similar presentations
Portuguese groups at ISOLDE - CERN
Advertisements

First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
Semiconductors n D*n If T>0
SEMICONDUCTORS Semiconductors Semiconductor devices
Defects & Impurities BW, Ch. 5 & YC, Ch 4 + my notes & research papers
1Ruđer Bošković Institute, Zagreb, Croatia
A photoluminescence study of Cd, In and Sn in ZnO using radioisotopes Joseph Cullen, Martin Henry, Enda McGlynn Dublin City University Karl Johnston Universitat.
Probing Electrostructural Coupling on Magnetoelectric CdCr 2 S 4 1 IFIMUP and IN- Institute of Nanoscience and Nanotechnology and Department of Physics,
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
KINETICS OF INTERSTITIAL CARBON ANNEALING AND MONITORING OF OXYGEN DISTRIBUTION IN SILICON PARTICLE DETECTORS L.F. Makarenko*, M. Moll**, F.P. Korshunov***,
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
Ion implantation doping of perovskites and related oxides Ulrich Wahl Instituto Tecnológico e Nuclear (ITN), Sacavém, Portugal Collaborators: João Guilherme.
Implantation of N-O in Diamond
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Post Anneal Solid State Regrowth
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
LOCAL PROBE STUDIES IN MANGANITES AND COMPLEX OXIDES V.S. Amaral 1, A.M.L. Lopes 2, J.P. Araújo 3, P.B. Tavares 4, T.M. Mendonça 3,5, J. S. Amaral 1, J.N.
Juliana Marques Ramos 1,2 German Thesis Advisor: Reiner Vianden 2, Brazilian Thesis Advisor: Artur Wilson Carbonari 1 Collaborators: João Guilherme Martins.
SILICON DETECTORS PART I Characteristics on semiconductors.
Applications of Mössbauer Spectroscopy at WITS and ISOLDE/CERN by Professor Deena Naidoo Wits-NECSA Workshop September 2015.
High Resolution optical spectroscopy in isotopically-pure Si using radioactive isotopes: towards a re-evaluation of deep centres Mike Thewalt 1, Karl Johnston.
Experimental Investigation of of the use of Elemental Transmutation for efficient p-type doping in HgCdTe and HgCdTeSe Contract Officer: Dr. W. Clark,
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
(n,p) emission channeling measurements on ion-implanted beryllium INTC-P-233 J.P. Araujo, J.G. Correia, M. Dawson, M. Faist, H.O.U. Fynbo, C. Granja, J.
Doping and Crystal Growth Techniques. Types of Impurities Substitutional Impurities Substitutional Impurities –Donors and acceptors –Isoelectronic Defects.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
Direct identification of interstitial Mn in Ga 1-x Mn x As and evidence of its high thermal stability Lino Pereira 1, 2, 3 U. Wahl 2, J. G. Correia 2,,
UNIVERSITÄT DES SAARLANDES 1 Introduction to solid state physics at ISOLDE Th. Wichert (Universität des Saarlandes) Nuclear Physics & Astrophysics at CERN.
Diffusion of 56 Co in GaAs, ZnO and Si 1-x Ge x systems INTC Meeting
Burnaby - Dublin - Freiberg – Manchester – Saarbrücken - ISOLDE Collaboration Spokesperson: M. Deicher Contact person: K. Johnston.
Magnetic and structural properties of manganese doped (Al,Ga)N studied with Emission Mössbauer Spectroscopy Spokespersons: Alberta Bonanni Haraldur Páll.
Perturbed Angular Correlation studies of Hg coordination mechanisms on functionalized magnetic nanoparticles P. Figueira, M. Silva Martins, A. L. Daniel-da-Silva,
SOLID STATE ISOLDE 40èmes Journées des Actinides
Semiconductors with Lattice Defects
Diffusion in Intermetallic Compounds
Donor-Acceptor Complexes in ZnO
Study of molybdenum oxide by means of perturbed angular correlations and mößbauer spectroscopy Juliana Schell 1,2 João Guilherme Martins Correia 1,3, Katharina.
PAC study of the magnetic and structural first-order phase transition in MnAs J. N. Gonçalves 1 V. S. Amaral 1, J. G. Correia 2, A. M. L. Lopes 3 H. Haas.
Origin of unusual Ag diffusion profiles in CdTe 1 J. Lehnert, M. Deicher, K. Johnston, Th. Wichert, H. Wolf Experimentalphysik, Universität des Saarlandes,
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
1 Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Sacavém, Portugal 2 Instituut voor Kern- en Stralingsfysica.
Lattice location studies of the “anti-site” impurities As and Sb in ZnO and GaN Motivation 73 As in ZnO 73 As in GaN 124 Sb in GaN Conclusions U. Wahl.
Fighting f-factors and implantation damage in emission Mössbauer spectroscopy Haraldur Páll Gunnlaugsson* The Mössbauer collaboration at ISOLDE CERN The.
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
1) Instituto Tecnológico e Nuclear, Sacavém, Portugal 2) Centro de Física Nuclear da Universidade de Lisboa, Portugal 3) II. Physikalisches Institut, Universität.
Boron and Phosphorus Implantation Induced Electrically Active Defects in p-type Silicon Jayantha Senawiratne 1,a, Jeffery S. Cites 1, James G. Couillard.
1 WORKSHOP AND USERS February 2007 Lattice site location of implanted Fe in SrTiO 3 and lattice damage recovery studies A. C. Marques 1,4 *, U. Wahl 1,2,
Emission Mössbauer spectroscopy of advanced materials for opto- and nano-electronics Spokepersons: Haraldur Páll Gunnlaugsson Sveinn Ólafsson Contact person:
Solid State Devices EE 3311 SMU
Solid State and bio-physics at ISOLDE
Emission Channeling with Short-Lived Isotopes: lattice location of impurities in semiconductors and oxides L.M.C. Pereira1 , L. Amorim1, J.P. Araújo4,
New Tilted-Foils Plus beta-NMR Setup at REX-ISOLDE
Emission channeling with short-lived isotopes (EC-SLI) of acceptor dopants in nitride semiconductors Proposal INTC-P-489 U. Wahl1, V. Augustyns2, J.G.
Emission Mössbauer Spectroscopy at ISOLDE/CERN
Mössbauer studies of dilute magnetic semiconductors
Modeling Vacancy-Interstitial Clusters and Their Effect on Carrier Transport in Silicon E. Žąsinas, J. Vaitkus, E. Gaubas, Vilnius University Institute.
The concentrations of impurities and point defects in melt grown ZnSe
Hyperfine interaction studies in Manganites
Section 7: Diffusion Jaeger Chapter 4 EE143 – Ali Javey.
Fermi Level Dependent Diffusion in Silicon
SOLID STATE CHMISTRY By: Dr. Aamarpali
MIT Amorphous Materials 10: Electrical and Transport Properties
Defects & Impurities BW, Ch. 5 & YC, Ch 4 + my notes & research papers
Presentation transcript:

High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa, Portugal  Tracer diffusion: Ag in CdTe  Transition metal impurities in Si: Fe  Photoluminescence: nature of the “green band” in ZnO  Arsenic as an “anti-site” impurity in ZnO  O and F configurations in High-T c Hg1201  Polaron dynamics in Colossal Magneto-Resistive manganites  Magnetic hyperfine fields of adatoms at surfaces: Cd on Ni Ulrich Wahl

Use of radioactive isotopes in Solid State Physics - Detect nuclear radiation to quantify impurities:  radiotracer diffusion - Decay particles transmit information with atomic resolution:  Emission Channeling (EC)  Perturbed Angular Correlation (PAC)  Mössbauer Spectroscopy (MS)  Beta Nuclear Magnetic Resonance (  -NMR) - Identify spectroscopic signals via isotope half life:  Photoluminescence (PL)  Deep Level Transient Spectroscopy (DLTS  Hall effect At ISOLDE often several of these methods are used in combination

The “unusual” diffusion of 111 Ag in CdTe “Normal” Gaussian diffusion profile Very unusual symmetrical diffusion profile Why? H. Wolf et al, Phys. Rev. Lett 94 (2005)

Lattice location of 107 Cd  107m Ag(40s) and 109 Cd  109m Ag(44s) in CdTe Emission Channeling lattice location:  substitutional Ag Cd  low stability of Ag Cd E a = 0.92(4)eV  long-range diffusion  amount of Ag Cd depends on the Cd stoichiometry S.G. Jahn et al, J. Cryst. Growth 161 (1996) 172 Cd Te Ag Ag i + V Cd  Ag Cd Ag i + Cd S  Ag Cd + Cd i

Diffusion of 111 Ag in CdTe Symmetrical diffusion profile H. Wolf et al, Phys. Rev. Lett 94 (2005) depletion of Ag in surface regions due to slow indiffusion of Cd [Ag S ] ~ [V Cd ] Cd Te Ag Ag i + V Cd  Ag Cd Ag i + Cd S  Ag Cd + Cd i Cd i + V Cd  Cd S Cd

Identify + control Fe in Si below cm -3 International Technology Roadmap for Semiconductors

Transition metal impurities in Si  Fe, Ni, Co, Cu… fast interstitial diffusers  deep centers  interact with dopants and change the electrical properties of dopants  must be gettered away from active region of devices, e.g. by trapping at radiation damage  investigate properties of Fe in Si by Emission Channeling (EC) and Mössbauer spectroscopy (MS)

U. Wahl et al, Phys. Rev. B 72 (2005)  At least 3 different Fe lattice sites  Following release to interstitial state re-gettering occurs at a different gettering center on ideal substitutional sites Lattice site changes of implanted 59 Fe in Si RT as-implanted: mainly displaced substitutional Fe experimentsimulations annealed at T=300°C: mainly tetrahedral interstitial Fe experimentsimulations annealed at T=800°C: mainly ideal substitutional Fe experimentsimulations   angular emission channeling patterns

Mössbauer effect from 57 Mn  57 Fe in Si H.P. Gunnlaugsson et al, Appl. Phys. Lett. 80 (2002) 2657  4-5 different Fe centers identified  interstitial Fe seen by EC is probably a (Fe i -V) complex  MS line broadening reveals difference in diffusion coefficients of Fe i  and Fe i 0 Fe i V

 wurtzite semiconductor with band gap of 3.4 eV  very similar to GaN but with superior optical properties  large single crystals available Major problem  all undoped crystals are n-type (vacancies, interstitials, other defects, impurities?)  p-doping extremely difficult Zinc Oxide Nichia Co., Japan GaN blue laser Why not yet in ZnO?

Puzzles of the “green band” in ZnO “Structured” green luminescence band in ZnO R. Dingle, Phys. Rev. Lett. 23 (1969) 579 Conflicting explanations for the “green band” in the literature: Cu Zn - impurities Vacancies (e.g., V O, V Zn )  investigate properties of Cu in ZnO and nature of green band by emission channeling and PL

Lattice location of 67 Cu  67 Zn in ZnO 67 Cu 61.9 h 67 Zn -- Implanted Cu occupies substitutional Zn sites: Cu Zn U. Wahl et al, Phys. Rev. B 69 (2004) ExperimentSimulation for Cu Zn ISOLDE / CERN: 2  cm  2 at 60 keV 200°C, 10 min, vacuum

PL-Signals of 64 Cu  ( 64 Ni, 64 Zn) in ZnO ISOLDE / CERN: 5  cm  2 at 60 keV 800°C, 30 min, O 2 3 h 12 h 72 h Energy [eV] t 1/2 = 12.1(1) h Intensity [a.u.] Time t [h] 64 Cu 64 Ni 12.7 h 64 Zn EC 61%  - 39% Green band ZnO: Green band Literature - - Cu Zn - impurities - Vacancies - Ni - impurities ? T. Agne et al, submitted to Phys. Rev. Lett.

ZnO: Green band Literature - - Cu - impurities - Vacancies - Ni - impurities ? t 1/2 = 2.6(2) h 1,0 h 3,6 h 12 h Intensity [a.u.] Time t [h] Intensity [a.u.] Energy [eV] Green band PL-Signals of 65 Ni  65 Cu  in ZnO 65 Ni 2.52 h 65 Cu -- ISOLDE / CERN: 5  cm  2 at 60 keV 800°C, 30 min, O 2 T. Agne et al, submitted to Phys. Rev. Lett.

Recoil energies of 64 Cu and 65 Ni Recoil energy: EC - decay  E recoil = 23.5 eV   - decay  E recoil  eV Displacement energy in ZnO *:Zn-atoms E displ = 19 eV O-atoms E displ = eV Both decays produce Zn vacancies: Green band  Zn vacancies in ZnO * D. C. Look, J. W. Hemsky, Phys. Rev. Lett. 82, 2552 (1999) 64 Cu 64 Ni 12.7 h 64 Zn EC 61%  - 39% 65 Ni 2.52 h 65 Cu -- T. Agne et al, submitted to Phys. Rev. Lett.

The difficulties in p-type doping of ZnO Candidates for acceptors: N, P, As, SbGroup V on S O Li, Na, K, RbGroup Ia on S Zn Cu, Ag Group Ib on S Zn already studied at ISOLDE investigations foreseen Maybe, but it does not like to occupy O sites but prefers Zn sites! Example: Is As a suitable acceptor in ZnO?

73 As as an “anti-site” impurity in ZnO Only patterns for S Zn fit the experimental results! U. Wahl et al, in print, Phys. Rev. Lett. (2005)

High-T c superconductors  Superconductivity and its T c critically influenced by the charge that O 2  doping introduces in the superconducting CuO 2 planes  Twice the number of F  introduce the same charge doping  investigate atomistic configurations of O 2  and F  dopants by means of electrical field gradient (EFG) it causes on PAC probe atom 199m Hg Radioactive ions PAC Electric Field Gradient  dopant configuration fingerprint

HgBa 2 CuO 4+  T c > 92K PAC Experiment  ~  (Mrad/s) EFG Simulations J.G. Correia et al, in press, Phys. Rev. B (2005) Oxygen & Fluorine Configurations in Hg1201 (High-T c )  In contrast to O, F orders in small atomistic stripes  Local deformations and atomistic stripes in the doping planes are NOT responsible for charge ordering at the CuO 2 planes

Colossal Magnetoresistive Manganites Complex multi-scale world with: Intrinsic inhomogeneities Clusters and stripes (charge, spin and structure) Unconventional phase transitions Charge-coupled lattice deformations: Polarons Strong coupling of spin, charge, orbital and lattice degrees of freedom  use 111m Cd impurities as local observers of the nature of structural phase transitions by means of PAC

Unconventional phase transitions as seen by 111m Cd in LaMnO 3.12 EFG d Strong Jahn-Teller Distortion EFG u Undistorted Two main local 111m Cd La environments Free Percolation threshold: 31% A.M.L. Lopes et al, submitted to Phys. Rev. Lett. Temperature [K] 111m Cd fraction [%] EFG asymmetry parameter  critical exponent  =0.42(2)

111m Cd in LaMnO 3.12 : polaron dynamics E a ~0.31 eV Thermally activated polaron dynamics Thermally activated polaron dynamics Hopping energy E a ~0.31 eV Hopping energy E a ~0.31 eV Dynamic Jahn-Teller distortions related to polaron diffusion give rise to EFG fluctuations/attenuation Fast fluctuations regime (observable region) A.M.L. Lopes et al, submitted to Phys. Rev. Lett.

Magnetism on surfaces Different adatom sites can be prepared via deposition and anneal temperature  allows systematic studies of magnetic hyperfine fields B HF at different sites by means of PAC

K. Potzger et al, Phys. Rev. Lett. 88 (2002) B HF parabolic function of coordination number

 Semiconductors: Si, Ge, SiGe, diamond, III-V, nitrides, II-VI, ZnO… Si, Ge, SiGe, diamond, III-V, nitrides, II-VI, ZnO… electrical doping, transition metals, rare earths, H, diluted magnetic semiconductors  High-T c superconductors and perovskites  Magnetism (manganites, CMR)  Low dimensional systems: surfaces, interfaces, multilayers Solid state physics at ISOLDE covers a wide range of materials: ISOLDE’s strength: the variety of different experimental methods that can be combined to study these materials

Thanks to Thomas Agne, U Leipzig Vitor Amaral, U Aveiro João Pedro Araújo, U Porto Joachim Bollmann, U Dresden João Guilherme Correia, ITN Lisbon + CERN Manfred Deicher, U Saarbrücken Haraldur Gunnlaugsson, U Aarhus Karl Johnston, U Saarbrücken + CERN Yuri Manzhur, HMI Berlin Bart De Vries, IKS Leuven Gerd Weyer, U Aarhus Herbert Wolf, U Saarbrücken Wolf-Dietrich Zeitz, HMI Berlin for providing slides