SMOS AlgoVal meeting #16, Brest, 8-9 July, 2009 Computing Tb BOA and Tb surf C. Gabarró, J. Font SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta.

Slides:



Advertisements
Similar presentations
Analysis of AMSR-E C & X-band Tb data dependencies with wind & wave characteristics.
Advertisements

1 © ACRI-ST, all rights reserved – 2012 Galactic noise model adjustment Jean-Luc Vergely (ACRI-ST) Jacqueline Boutin (LOCEAN) Xiaobin Yin (LOCEAN)
AN INITIAL LOOK AT THE IMPACT OF THE NEW ANTENNA LOSS MODEL Joe Tenerelli SMOS QUALITY WORKING GROUP #4 7-9 March 2011.
CONICAL ELECTROMAGNETIC WAVES DIFFRACTION FROM SASTRUGI TYPE SURFACES OF LAYERED SNOW DUNES ON GREENLAND ICE SHEETS IN PASSIVE MICROWAVE REMOTE SENSING.
SMOS-BEC – Barcelona (Spain) CP34/BEC L3-L4 maps internal production chain BEC team SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta 37-49, Barcelona.
OSE meeting GODAE, Toulouse 4-5 June 2009 Interest of assimilating future Sea Surface Salinity measurements.
1 © ACRI-ST, all rights reserved – 2012 TEC estimation Jean-Luc Vergely (ACRI-ST) Jacqueline Boutin (LOCEAN)
Aquarius Status Salinity Retrieval and Applications D. M. Le Vine NASA/GSFC, Greenbelt, MD E. P. Dinnat, G. Lagerloef, P. de Matthaeis, H. Kao, F.
The Aquarius Salinity Retrieval Algorithm Frank J. Wentz and Thomas Meissner, Remote Sensing Systems Gary S. Lagerloef, Earth and Space Research David.
MIRAS performance based on OS data SMOS MIRAS IOP 6 th Review, ESAC – 17 June 2013 Prepared by: J. Font, SMOS Co-Lead Investigator, Ocean Salinity – ICM-CSIC.
IFREMER EMPIRICAL ROUGHNESS MODEL Joe Tenerelli, CLS, Brest, France, November 4, 2010.
SMOS L2 Ocean Salinity – PM#25 1/20 Level 2 Ocean Salinity May 2013 v600 status v610 planning & schedule Slim-line UDP & improved.
Scatterometer Algorithm Simon Yueh, Alex Fore, Adam Freedman, Julian Chaubell Aquarius Scatterometer Algorithm Team July 19, 2010 Seattle.
Aquarius/SAC-D Mission Mission Simulators - Gary Lagerloef 6 th Science Meeting; Seattle, WA, USA July 2010.
1 Impact study of AMSR-E radiances in NCEP Global Data Assimilation System Masahiro Kazumori (1) Q. Liu (2), R. Treadon (1), J. C. Derber (1), F. Weng.
Ifremer Planning of Cal/Val Activities during In orbit commisioning Phase N. Reul, J. Tenerelli, S. Brachet, F. Paul & F. Gaillard, ESL & GLOSCAL teams.
SMOS Validation Rehearsal Campaign Workshop, 18-19/11/2008, Noordwijkerhout, The Netherlands SMOS Validation Rehearsal Campaign Mediterranean flights C.
Galactic noise model adjustment Jean-Luc Vergely (ACRI-ST) Jacqueline Boutin (LOCEAN) Xiaobin Yin (LOCEAN)
MWR Roughness Correction Algorithm for the Aquarius SSS Retrieval W. Linwood Jones, Yazan Hejazin, Salem Al-Nimri Central Florida Remote Sensing Lab University.
SMOS Science Workshop, Arles, th Sept, 2011 IMPROVING SMOS SALINITY RETRIEVAL: SYSTEMATIC ERROR DIAGNOSTIC J. Gourrion, R. Sabia, M. Portabella,
SMOS QWG-5, 30 May- 1 June 2011, ESRIN Ocean Salinity 1 1.Commissioning reprocessing analysis 2.New processor version: improvements and problems detected/solved.
© R.S. Lab, UPC IGARSS, Vancouver, July, 2011 OIL SLICKS DETECTION USING GNSS-R E. Valencia, A. Camps, H. Park, N. Rodríguez-Alvarez, X. Bosch-Lluis.
Progress Meeting #27, April 2015, Barcelona SPAIN T3.2 Retrieval algorithm Estrella Olmedo BEC team SMOS Barcelona Expert Centre Pg. Marítim de la.
WATER LEVEL MONITORING USING THE INTERFERENCE PATTERN GNSS-R TECHNIQUE § Remote Sensing Lab, Dept. TSC, Building D3, Universitat Politècnica de Catalunya,
Different options for the assimilation of GPS Radio Occultation data within GSI Lidia Cucurull NOAA/NWS/NCEP/EMC GSI workshop, Boulder CO, 28 June 2011.
Ocean Data Variational Assimilation with OPA: Ongoing developments with OPAVAR and implementation plan for NEMOVAR Sophie RICCI, Anthony Weaver, Nicolas.
SMOS SSS and wind speed J. Boutin, X. Yin, N. Martin -Optimization of roughness/foam model -Comparison of new-old ECMWF wind speeds -SSS anomaly in the.
Welcome to ICM !. 4 departments Marine Biology and Oceanography Marine Geology Physical Oceanography Renewable Marine Resources 84 members 44 members.
Calibration and Validation Studies for Aquarius Salinity Retrieval PI: Shannon Brown Co-Is: Shailen Desai and Anthony Scodary Jet Propulsion Laboratory,
UPDATE ON THE SUN GLINT Joe Tenerelli Ocean Data Lab SMOS Level 2 OS Progress Meeting 26 SMOS Barcelona Expert Centre Barcelona, Spain April 2015.
SCIENCE PROCESSING OVERVIEW David Le Vine Aquarius Deputy PI 07 July 2009.
A. Montuori 1, M. Portabella 2, S. Guimbard 2, C. Gabarrò 2, M. Migliaccio 1 1 Dipartimento per le Tecnologie (DiT), University of Naples Parthenope, Italy.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity PM # November 2010 ARGANS & L2OS LOCEAN, Paris.
SMOS QWG-11, ESRIN 4-5 July 2013 L2OS v600 status and evolution 1 The SMOS L2 OS Team.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity L2OS planning 2 July 2014 ARGANS & SMOS L2OS ESL 1.
Satellite-derived Sea Surface Temperatures Corey Farley Remote Sensing May 8, 2002.
1 / 13 Current activities at ICM-SMOS-BEC J. Gourrion, C. Gabarró, R. Sabia, M. Talone, V. González, S. Montero, S. Guimbard, F. Pérez, J. Martínez, M.
SPCM-9, Esac, May 3 rd, 2012 MODEL-INDEPENDENT ESTIMATION OF SYSTEMATIC ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES J. Gourrion, S. Guimbard, R. Sabia,
Dependence of SMOS/MIRAS brightness temperatures on wind speed and foam model Xiaobin Yin, Jacqueline Boutin LOCEAN & ARGANS.
Level 2 Algorithm. Definition of Product Levels LevelDescription Level 1 1A Reconstructed unprocessed instrument data 1B Geolocated, calibrated sensor.
Optimization of L-band sea surface emissivity models deduced from SMOS data X. Yin (1), J. Boutin (1), N. Martin (1), P. Spurgeon (2) (1) LOCEAN, Paris,
Introduction Martin et al. JGR, 2014 CAROLS airborne Tbs indicate slightly lower wind influence than predicted by model 1 at high WS In model 1 previous.
SMOS-BEC – Barcelona (Spain) Revealing Geophysically-Consistent Spatial Structures in SMOS Surface Salinity Derived Maps Marcos Portabella, Estrella Olmedo,
Definition and assessment of a regional Mediterranean Sea ocean colour algorithm for surface chlorophyll Gianluca Volpe National Oceanography Centre, Southampton.
Space Reflecto, November 4 th -5 th 2013, Plouzané Characterization of scattered celestial signals in SMOS observations over the Ocean J. Gourrion 1, J.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity v63x product design evolution 22 April 2015 ARGANS & SMOS L2OS ESL 1.
WATER VAPOR RETRIEVAL OVER CLOUD COVER AREA ON LAND Dabin Ji, Jiancheng Shi, Shenglei Zhang Institute for Remote Sensing Applications Chinese Academy of.
USING SMOS POLARIMETRIC BRIGHTNESS TEMPERATURES TO CORRECT FOR ROUGH SURFACE EMISSION BEFORE SALINITY INVERSION.
SMOS-BEC – Barcelona (Spain) LO calibration frequency impact Part II C. Gabarró, J. Martínez, V. González, A. Turiel & BEC team SMOS Barcelona Expert Centre.
SMOS-BEC – Barcelona (Spain) Assessment of impact of new ECMWF cycle 38r2 BEC team SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta 37-49, Barcelona.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
ICM/UTM - CSIC Hymex activities Joaquim Ballabrera Jordi Font Jordi Salat Marta Umbert.
SMOS QWG-9, ESRIN October 2012 L2OS: Product performance summary v550 highlights 1 The SMOS L2 OS Team.
SMOS mission: a new way for monitoring Sea Surface Salinity? J. Boutin (1) (1) Laboratoire d’Oceanographie et du Climat- Expérimentation et Applications.
Faraday Rotation David Le Vine Aquarius Algorithm Workshop March 9-11, 2010.
(c) 2009 California Institute of Technology. Government sponsorship acknowledged. Improving Predictions of the Earth’s Rotation Using Oceanic Angular Momentum.
Level 2 Scatterometer Processing Alex Fore Julian Chaubell Adam Freedman Simon Yueh.
SMOS-BEC – Barcelona (Spain) Variable LO freq. Cal. analysis LO at 2min from to BEC team SMOS Barcelona Expert Centre Pg. Marítim de.
A step toward operational use of AMSR-E horizontal polarized radiance in JMA global data assimilation system Masahiro Kazumori Numerical Prediction Division.
QWG-10 – 4-6 February 2013 – ESRIN (Italy) SMOS Level3 and Level 4 Research Products Provided by the Barcelona Expert Center Jordi Font and BEC team SMOS.
Impact of sea surface roughness on SMOS measurements A new empirical model S. Guimbard & SMOS-BEC Team SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta.
UPDATE ON GALACTIC NOISE CORRECTION Joe Tenerelli SMOS Quality Working Group #9 ESA ESRIN 24 October 2012.
Dependence of SMOS/MIRAS brightness temperatures on wind speed: sea surface effect and latitudinal biases Xiaobin Yin, Jacqueline Boutin LOCEAN.
Universitat Politècnica de Catalunya CORRECTION OF SPATIAL ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES L. Wu, I. Corbella, F. Torres, N. Duffo, M. Martín-Neira.
21-23/04/2015PM27 ACRI-ST ARGANS LOCEAN TEC follow-up.
Ocean Salinity Science 2014, 26–28 November, Exeter (UK) J. Ballabrera, N. Hoareau, M. Portabella, E. Garcia-Ladona, A. Turiel SMOS Barcelona Expert Centre.
SST from MODIS AQUA and TERRA Kay Kilpatrick, Ed Kearns, Bob Evans, and Peter Minnett Rosenstiel School of Marine and Atmospheric Science University of.
Roughness Correction for Aquarius (AQ) Sea Surface Salinity (SSS) Algorithm using MicroWave Radiometer (MWR) W. Linwood Jones, Yazan Hejazin Central FL.
NOAA/NESDIS/Center for Satellite Applications and Research
ประกาศกระทรวงอุตสาหกรรม ฉบับที่ 5292 (พ.ศ. 2562)
Presentation transcript:

SMOS AlgoVal meeting #16, Brest, 8-9 July, 2009 Computing Tb BOA and Tb surf C. Gabarró, J. Font SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta 37-49, Barcelona SPAIN URL:

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10 Gal + cosmic atmosphere Geometric ionosphere Tb_gal Tb_Atm_up Tb_Atm_dn Tb_Toa – earth ref Tb_XY – antenna ref Tb_boa Tb_surf =Tb_flat+Tb_rough Reflection

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10 Why to compute Tb boa and Tb surf  From L1c -> TBX,Y  Tb boa and Tb surface useful for:  Calibration/Validation as pointed out by Cal/Val teams  Comparisons with insitu are more intuitive and could help on decision between Full vs Dual pol  For assimilation of Tb boa in general circulation models  Evaluation of roughness models  To derive roughness model 3 from the ECMWF parameters

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10 Equations to compute Tb BOA How to compute it? From sea to antenna From antenna to sea

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10  Data needed to compute Tb_boa and Tb_surf:  BP_FOM_8-1:  Tb AtmUp (H,rough_model=1) =Tb AtmDn  Tb Foam (H & V,rough_model=[1->2])  Tb Gal (H & V, rough_model=[1,4]) ; Why different for RGH1 and 4?  Trans (rough_model=1)  Theta (rough_model=1)  F foam (rough_model=[1,2])  Tb Flat (H & V pol,rough_model=1)  Tb Rough (H & V & 3rd & 4th,rough_model=[1->4])  BP_FOM_9-1:  a (is the angle for geometry and faraday, H)  BP_MAP_3_3-1  A_cor (corrected measured antenna TB, only for valid meas. H&V) For comparison purpose only

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10  Problems and questions:  TEC is retrieved at L2. It is possible to use TEC from L1c or from L2 – UDP.  Should Tb_gal be rotated by geometry and Faraday (Joe)?  What to do for θ=+/-45? -> Singularity for dual-pol -> θ ± ε If I (Th+Tv) is used -> avoid problems on rotation

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10  How to compute the Fresnel reflection coefficient? -> problem only for Tb surf not for Tb BOA  Compute Γ from a flat sea or from 2-scale or SSA? Is it acceptable to use those with the other models?

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10 Figure, Intercomparison between Small Slope Approx.: (triangles) with Kudryavtsev sea surface spectrum (without foam), the WISE measurements (stars + dotted line for error bars) and Hollinger’s measurements (diamonds + solid error bars) of the TB sensitivity to wind speed [Reul et al., 2006] from Camps et al, Figure from Zine et al Figure from Camps et al

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10 Critical case: Tb rough =0.5 *WS(15m/s)=7.5K SST=288 K Tb flat =110K Γ tbrough=0 = Γ tbrough=7.5 =0.592 Γ tbrough=0 *TB DN (6K)=3.708 Γ tbrough=0 *TB gal (10K)=6.18 Γ tbrough=7.5 *TB DN (6K)=3.552 Γ tbrough=7.5 *TB gal (10K)=5.95 ΔTB DN =0.156 K ΔTB gal =0.23 K So any roughness model could be used for computing Γ*Tb_gal and Γ*Tbatm with ECMWF roughness param. -> small impact Is there a LUT for Tbgal_refl? And a LUT for Γ ?

SMOS AlgoVal meeting #16, Brest, 8-9 July, / 10  How to do this operational?  Now, impossible since files of 8G for only 5º of lat. (15 h, for 1 it.) -> Need to find a solution.  Create new breakpoints containing only the needed info?  May be to obtain Tb_gal_ref, TBatm, trans, Tb_foam, F foam -> from Ingo MATLAB mex code?  May be to retain information of N GPs, and then write in several breakpoints --> avoid to write every GP.  Or if memory permits, to write info at the end of processing, as it is done with UDP and DAP.  SD: there is a tool (Brockman consult) for having SMOS L1c only for a defined area

SMOS Barcelona Expert Centre (SMOS-BEC) Pg. Marítim de la Barceloneta 37-49, E Barcelona, SPAIN Tel. (+34) ; Fax. (+34) URL: