1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 

Slides:



Advertisements
Similar presentations
03/19/2003 Week #4 江支弘 Chapter 4 Making Predictions: Regression Analysis.
Advertisements

Chapter 12 Simple Linear Regression
Chapter 11 Inferences About Population Variances
Chapter 14, part D Statistical Significance. IV. Model Assumptions The error term is a normally distributed random variable and The variance of  is constant.
Regresi dan Korelasi Linear Pertemuan 19
Chapter 12 Simple Linear Regression
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter Four Parameter Estimation and Statistical Inference.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
社研法助教課, 2007/04/11 如何閱讀 SPSS 圖表 (迴歸分析篇) By 黃昱珽. 小考題目 大華用 SPSS 得到以下的資料: (圖表見下面) 說明 : BABYMORT = 嬰兒死亡率, GDP_CAP = 一國國民生產毛額, LIT_FEMA = 女性識字率。 資料來源 : 聯合國,
1 Simple Regression ( 簡單迴歸分析 ) Social Research Methods 2109 & 6507 Spring, 2006 March 8, 9, 13, 2006.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
Section 2.3 Least-Squares Regression 最小平方迴歸
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Chapter 9 Hypothesis tests with the t statistic. 當母體  為未知時 ( 我們通常不知 ) ,用樣本 s 來取代 因為用 s 來估計  ,所呈現出來的分佈已不 是 z distribution ,而是 t distribution.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
Regression model A prediction approach. Prediction Independent variable (input/operating variable) Dependent variable (response variable) Prediction error.
Chapter 12b Testing for significance—the t-test Developing confidence intervals for estimates of β 1. Testing for significance—the f-test Using Excel’s.
Chapter 12a Simple Linear Regression
觀測量的權 權的觀念與計算.
變異數分析 迴歸分析 因素分析 區別分析 集區分析
1 Part IB. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple regression Spring 2007.
Unit 3 : 變異數分析 --ANOVA 3.1 範例說明 行銷研究方面, One-Way ANOVA 可 用以研擬市場區隔及目標選擇策略。 教育研究方面,此一模式可用以評估 教師之教學績效。 農業研究方面,此一模式則可用以挑 選使玉米收穫量極大化的肥料。
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:報告結果 與選擇函數型式 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
連續隨機變數 連續變數:時間、分數、重量、……
Inference for Simple Regression Social Research Methods 2109 & 6507 Spring 2006 March 15, 16, 2006.
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 14 Simple Regression
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide Simple Linear Regression Part A n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n.
Econ 3790: Business and Economics Statistics
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
QMS 6351 Statistics and Research Methods Regression Analysis: Testing for Significance Chapter 14 ( ) Chapter 15 (15.5) Prof. Vera Adamchik.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 15 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
Copyright © 2011 Pearson Education, Inc. Linear Patterns Chapter 19.
Chapter 13 Multiple Regression
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Chapter 12 Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
INTRODUCTION TO MULTIPLE REGRESSION MULTIPLE REGRESSION MODEL 11.2 MULTIPLE COEFFICIENT OF DETERMINATION 11.3 MODEL ASSUMPTIONS 11.4 TEST OF SIGNIFICANCE.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Lecture 11: Simple Linear Regression
Pertemuan 22 Analisis Varians Untuk Regresi
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12
Statistics for Business and Economics (13e)
Quantitative Methods Simple Regression.
Econ 3790: Business and Economics Statistics
Slides by JOHN LOUCKS St. Edward’s University.
St. Edward’s University
Presentation transcript:

1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 +  1 x n Estimated Simple Linear Regression Equation y = b 0 + b 1 x ^

2 2 Slide 最小平方直線(最佳預測直線) n 通過平面分佈圖資料點的直線中,使預測誤差平方和 爲最小者即稱爲最小平方直線,而此方法即稱爲最小 平方法( Least Square Method ) n 何謂誤差平方和? 設 爲 n 個資料點,若以 做 爲以 X 預測 Y 的直線,則當 X = x1 ,預測值 與實際觀 察的 y1 之差異 即稱爲預測誤差,誤差平方和即定義爲 求 使函數 f 爲最小時,由微積分解 “ 極大或極小 ” 方法。

3 3 Slide 最小平方直線 解此聯立方程組 : 可得 可得 故最小平方直線為

4 4 Slide Example: Reed Auto Sales n Simple Linear Regression Reed Auto periodically has a special week-long sale. As part of the advertising campaign Reed runs one or more television commercials during the weekend preceding the sale. Data from a sample of 6 previous sales are shown below. Number of TV Ads Number of Cars Sold Number of TV Ads Number of Cars Sold

5 5 Slide n Slope for the Estimated Regression Equation b 1 = (12)(122)/5 = 5 b 1 = (12)(122)/5 = (12) 2 / (12) 2 /5 n y -Intercept for the Estimated Regression Equation b 0 = (2) = b 0 = (2) = n Estimated Regression Equation y = x ^ Example: Reed Auto Sales

6 6 Slide Example: Reed Auto Sales n Scatter Diagram

7 7 Slide The Coefficient of Determination n Relationship Among SST, SSR, SSE SST = SSR + SSE n Coefficient of Determination r 2 = SSR/SST where: SST = total sum of squares SST = total sum of squares SSR = sum of squares due to regression SSR = sum of squares due to regression SSE = sum of squares due to error SSE = sum of squares due to error ^^

8 8 Slide 判定係數 n 定義: r 2 = SSR/SST n 用以表示 Y 的變異數中已被 X 解釋的部分(比率) 當 r 2 愈大時,表示最小平方直線愈精確 當 r 2 愈大時,表示最小平方直線愈精確 1 - r 2 為總變異數 (SST) 中無法由 X 解釋的餘量(剩餘的比率) 1 - r 2 為總變異數 (SST) 中無法由 X 解釋的餘量(剩餘的比率) n 表示汽車銷售量的差異與變化有 85.2% 可由 “ 廣告次數 ” 這個因 素來解釋(而有 14.8% 無法由 “ 廣告次數 ” 所解釋) 表示汽車銷售量的差異與變化有 85.2% 可由 “ 廣告次數 ” 這個因 素來解釋(而有 14.8% 無法由 “ 廣告次數 ” 所解釋) Example: Reed Auto Sales r 2 = SSR/SST = 100/ =

9 9 Slide The Correlation Coefficient n Sample Correlation Coefficient where: b 1 = the slope of the estimated regression b 1 = the slope of the estimated regressionequation

10 Slide Example: Reed Auto Sales n Sample Correlation Coefficient The sign of b 1 in the equation is “+”. r xy = r xy =

11 Slide Model Assumptions Assumptions About the Error Term  Assumptions About the Error Term  The error  is a random variable with mean of zero. The error  is a random variable with mean of zero. The variance of , denoted by  2, is the same for all values of the independent variable. The variance of , denoted by  2, is the same for all values of the independent variable. The values of  are independent. The values of  are independent. The error  is a normally distributed random variable. The error  is a normally distributed random variable.

12 Slide Testing for Significance To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of  1 is zero. To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of  1 is zero. n Two tests are commonly used t Test t Test F Test F Test Both tests require an estimate of  2, the variance of  in the regression model. Both tests require an estimate of  2, the variance of  in the regression model.

13 Slide Testing for Significance An Estimate of  2 An Estimate of  2 The mean square error (MSE) provides the estimate of  2, and the notation s 2 is also used. s 2 = MSE = SSE/(n-2) s 2 = MSE = SSE/(n-2)where:

14 Slide Testing for Significance An Estimate of  An Estimate of  To estimate  we take the square root of  2. To estimate  we take the square root of  2. The resulting s is called the standard error of the estimate. The resulting s is called the standard error of the estimate.

15 Slide Testing for Significance: t Test n Hypotheses H 0 :  1 = 0 H 0 :  1 = 0 H a :  1 = 0 H a :  1 = 0 n Test Statistic n Rejection Rule Reject H 0 if t t  where t  is based on a t distribution with where t  is based on a t distribution with n - 2 degrees of freedom. n - 2 degrees of freedom.

16 Slide n t Test Hypotheses H 0 :  1 = 0 Hypotheses H 0 :  1 = 0 H a :  1 = 0 H a :  1 = 0 Rejection Rule Rejection Rule For  =.05 and d.f. = 4, t.025 = For  =.05 and d.f. = 4, t.025 = Reject H 0 if t > Reject H 0 if t > Test Statistics Test Statistics t = 5/ = Conclusions Conclusions Reject H 0 Reject H 0 P-value 2P{T>4.804}= }= <0.05 Reject H 0 Reject H 0 Example: Reed Auto Sales

17 Slide Confidence Interval for  1 We can use a 95% confidence interval for  1 to test the hypotheses just used in the t test. We can use a 95% confidence interval for  1 to test the hypotheses just used in the t test. H 0 is rejected if the hypothesized value of  1 is not included in the confidence interval for  1. H 0 is rejected if the hypothesized value of  1 is not included in the confidence interval for  1.

18 Slide Confidence Interval for  1 The form of a confidence interval for  1 is: The form of a confidence interval for  1 is: where b 1 is the point estimate is the margin of error is the t value providing an area of  /2 in the upper tail of a t distribution with n - 2 degrees t distribution with n - 2 degrees of freedom

19 Slide Example: Reed Auto Sales n Rejection Rule Reject H 0 if 0 is not included in the confidence interval for  1. 95% Confidence Interval for  1 95% Confidence Interval for  1 = (1.0408) = = (1.0408) = or 2.11 to 7.89 n Conclusion Reject H 0

20 Slide Testing for Significance: F Test n Hypotheses H 0 :  1 = 0 H 0 :  1 = 0 H a :  1 = 0 H a :  1 = 0 n Test Statistic F = MSR/MSE n Rejection Rule Reject H 0 if F > F  where F  is based on an F distribution with 1 d.f. in the numerator and n - 2 d.f. in the denominator.

21 Slide n F Test Hypotheses H 0 :  1 = 0 Hypotheses H 0 :  1 = 0 H a :  1 = 0 H a :  1 = 0 Rejection Rule Rejection Rule For  =.05 and d.f. = 1, 4: F.05 = For  =.05 and d.f. = 1, 4: F.05 = Reject H 0 if F > Reject H 0 if F > Test Statistic Test Statistic F = MSR/MSE = 100/4.333 = Conclusion Conclusion We can reject H 0. Example: Reed Auto Sales

22 Slide Some Cautions about the Interpretation of Significance Tests Rejecting H 0 :  1 = 0 and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y. Rejecting H 0 :  1 = 0 and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y. Just because we are able to reject H 0 :  1 = 0 and demonstrate statistical significance does not enable us to conclude that there is a linear relationship between x and y. Just because we are able to reject H 0 :  1 = 0 and demonstrate statistical significance does not enable us to conclude that there is a linear relationship between x and y.

23 Slide n Confidence Interval Estimate of E ( y p ) n Prediction Interval Estimate of y p y p + t  /2 s ind y p + t  /2 s ind where the confidence coefficient is 1 -  and t  /2 is based on a t distribution with n - 2 d.f. is the standard error of the estimate of E ( y p ) is the standard error of the estimate of E ( y p ) s ind is the standard error of individual estimate of estimate of Using the Estimated Regression Equation for Estimation and Prediction

24 Slide Standard Errors of Estimate of E ( y p ) and y p

25 Slide E ( y p ) 與 y p 估計式的變異數 n 的變異數:  的變異數:  的變異數: n 估計式的變異數:

26 Slide n Point Estimation If 3 TV ads are run prior to a sale, we expect the mean number of cars sold to be: y = (3) = cars n Confidence Interval for E ( y p ) 95% confidence interval estimate of the mean number of cars sold when 3 TV ads are run is: = to cars = to cars n Prediction Interval for y p 95% prediction interval estimate of the number of cars sold in one particular week when 3 TV ads are run is: = to cars ^ Example: Reed Auto Sales