GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 WP210: Spectral Aliassing Effects on Slant Column Retrieval R. De Beek.

Slides:



Advertisements
Similar presentations
SCIAMACHY Calibration Review, ESTEC, 11 September 2002 Tilstra, De Graaf, Stammes First verification of SCIAMACHY’s polarisation measurements Gijs Tilstra,
Advertisements

Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0)
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
Resolution.
Variability of Total Column Ozone During JAN JUN 2011: Consistency Among Four Independent Multi-year Data Records E.W. Chiou ADNET Systems Inc.,
1 Operational O3M-SAF trace-gas column products: GOME-2 tropospheric NO 2, Ozone, and total SO 2 AT2 Seventh Workshop Helsinki, Sep Oct. 1, 2008.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
14-16 April 2003Limb Workshop, Bremen1 Search for OClO signatures from Odin limb radiance measurements using DOAS technique P.Krecl, J.Stegman, C.S.Haley,
Page 1 1 of 19, OCO STM 2006 OCO Science Team Meeting March 22, 2006 Vijay Natraj (Caltech), Hartmut Bösch (JPL), Yuk Yung (Caltech) A Two Orders of Scattering.
Page 1 1 of 100, L2 Peer Review, 3/24/2006 Level 2 Algorithm Peer Review Polarization Vijay Natraj.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
Objective: Work with the WRAP, CenSARA, CDPHE, BLM and EPA Region 8 to use satellite data to evaluate the Oil and Gas (O&G) modeled NOx emission inventories.
Fundamentals of Satellite Remote Sensing NASA ARSET- AQ Introduction to Remote Sensing and Air Quality Applications Winter 2014 Webinar Series ARSET -
Reflected Solar Radiative Kernels And Applications Zhonghai Jin Constantine Loukachine Bruce Wielicki Xu Liu SSAI, Inc. / NASA Langley research Center.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Resolution Resolution. Landsat ETM+ image Learning Objectives Be able to name and define the four types of data resolution. Be able to calculate the.
TEMIS user workshop, Frascati, 8-9 October 2007 Tropospheric Formaldehyde (CH 2 O) from Satellite Observations. Isabelle De Smedt 1, M. Van Roozendael.
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December 2002 Validation of ENVISAT trace gas data products by comparison.
Biogenic, pryogenic, anthropogenic pryogenic anthropogenic biogenic anthropogenic pryogenic pyrogenic anthropogenic biogenic anthropogenic Thomas Kurosu,
Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Validation workshop, Frascati, 13 December 2002Page 1 SCIAMACHY products quality and recommendations Based on presentations and discussions during this.
Mark.Weber 1 / GOME2 Error Study: Column Retrieval Overview of Final Presentation (IUP Contribution): Main contribution from IUP.
Aldo Dell'Oro INAF- Observatory of Turin Detailed analysis of the signal from asteroids by GAIA and their size estimation Besançon November 6-7, 2003.
TEMPO Simulation and Retrieval Tools and Algorithm Testing at SAO Xiong Liu 3 rd TEMPO Science Team Meeting Huntsville, Al, May 27,
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
Kenneth Pickering (NASA GSFC), Lok Lamsal (USRA, NASA GSFC), Christopher Loughner (UMD, NASA GSFC), Scott Janz (NASA GSFC), Nick Krotkov (NASA GSFC), Andy.
Eumetsat GOME-2 Error Assessment Study Interim Findings Presentation by B.Kerridge on behalf of Serco, RAL, IUP & SRON GSAG, ESRIN, 11/12th April 2002.
A processing package for atmospheric correction of compact airborne spectrographic imager (casi) imagery over water including a novel sunglint correction.
IASI CH 4 Operational Retrieval Feasibility - Optimal Estimation Method Task 1+3: Updates Richard Siddans, Jane Hurley PM2, webex 10 October 2014.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Cloud-characterisation.
Harmonizationof GOME, SCIAMACHY, GOME-2 ozone cross-sections Anna Serdyuchenko, John P. Burrows, Mark Weber, Wissam Chehade University of Bremen, Germany.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
S5P cloud products Sebastián Gimeno García, Ronny Lutz, Diego Loyola German S5P Verification Meeting 1 Bremen, November Chart 1>
Rutherford Appleton Laboratory Remote Sensing Group Tropospheric ozone retrieval from uv/vis spectrometery RAL Space - Remote Sensing Group Richard Siddans,
14 January Observational Astronomy SPECTROSCOPIC data reduction Piskunov & Valenti 2002, A&A 385, 1095.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Task 1: Initial trade-off:
Eumetsat GOME-2 Error Assessment Study Interim Findings Presentation by B.Kerridge on behalf of Serco, RAL, IUP & SRON GSAG, ESRIN, 11/12th April 2002.
Limb Retrieval at IFE/IUP in Bremen Working team: A. Rozanov, K.-U. Eichmann, C. v. Savigny, J. Kaiser Tests based on level 0 data Normalisation by –Solar.
Recent Solar Irradiance Data From SBUV/2 and OMI Matthew DeLand and Sergey Marchenko Science Systems and Applications, Inc. (SSAI) SOLID WP-2 Workshop.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Rutherford Appleton Laboratory CAMELOT Observation Techniques and Mission Concepts for Atmospheric Chemistry Task 4: Assessment of Cloud Contamination.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Status of ongoing Kiruna site Myojeong Gu, Thomas Wagner MPI for Chemistry, Mainz, Germany 1.
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
GOME2 Error Study WP 260: Slant Column Errors due to neglicence of BRDF PM3 02/2002 Slant Column Errors due to Assumption of.
1 uni-bremen 04/2002 GOME2 Error Assessment Study Error Budget, Error Mitigation and Proposal for Future Work Mark Weber, Rüdiger.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
Remote Sensing Part 2 Atmospheric Interactions & Pre-processing.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
GOME2 Error Study WP 150: Basic SNR column retrieval PM2 10/2001 SNR Basic Column Retrieval R. De Beek, M. Weber,
Iodine Monoxide (IO) Nadir Scientific Data Product
UV/VIS backscattered Sun light retrievals from space born platforms
Deriving the Instrument Transfer Function from OMI Solar Observations and Its Implications for Ozone Retrievals Kang Sun, Xiong Liu, Zhaonan Cai, Guanyu.
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
VIRTIS Operations at Lutetia
Modification of Tracegas Scenarios
TOP-DOWN CONSTRAINTS ON EMISSION INVENTORIES OF OZONE PRECURSORS
An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME
Satellite Remote Sensing of Ozone-NOx-VOC Sensitivity
Space-based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions Randall Martin Aaron Van Donkelaar Arlene Fiore.
UVIS Calibration Update
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Presentation transcript:

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 WP210: Spectral Aliassing Effects on Slant Column Retrieval R. De Beek and M. Weber I) Statistics on radiance error: albedo sequences were analysed to identify worst case scenario from LANDSAT and synthetic albedo perturbation provided by RAL (138 spectra in Spectra_ tar, Siddans and Latter) worst case scenario was defined by square root of maximum variance of differential albedo error spectra (StDev) definition of differential albedo error spectra:    I( ) relative intensity perturbation due to albedo variation  P( ) fitted quadratic (cubic) polynomial  W a ( ) albedo weighting function (SCIATRAN)   a( ) albedo sequence with mean albedo subtracted  amean albedo of sequence

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 albedo weighting function calculated for a 55N April scenario (SZA=49.5°, RAZ=57°, LOS=0°, albedo=0.5) categories of albedo sequences:  1m_box_80 40X80 km2 GOME pixel (IT=0.1875s), no IFOV convolution  1m_box_40 40X40 km2 GOME pixel (reduced swath width), no IFOV convolution  gome2_box_80 40X80 km2 GOME pixel, IFOV GOME2 boxcar convolution  gome2_box_40 40X40 km2 GOME pixel, IFOV GOME2 boxcar convolution  gome2_80 40X80 km2 GOME pixel, IFOV GOME2 slit function convolution  gome2_40 40X40 km2 GOME pixel, IFOV GOME2 slit function convolution error perturbation calculated for all possible albedo sequences in each scan contained in the 138 selected images (Landsat, synthetic images).

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Worst Case Statistics: Ozone (O3) Landsat Images (black ROT=46ms, blue ROT=6ms) Position Scan StDev mean albedo sequence file albedo e img6/l _ _10_1m_box_ e img6/l _ _10_gome2_box_ e img6/l _ _10_gome2_ e img6/l _ _10_1m_box_ e img6/l _ _10_gome2_box_ e img6/l _ _10_gome2_ e img6/l _ _10_gome2_80 Synthetic Images Position Scan StDev mean albedo sequence file albedo e syn3/pix80_nd3_p1_10_1m_box_ e syn1/pix80_nd1_p1_10_gome2_box_ e syn1/pix80_nd1_p1_10_gome2_80

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Worst Case Statistics: Nitrogen Oxide (NO2) Landsat Images (black ROT=46ms, blue ROT=6ms) Position Scan StDev mean albedo sequence file albedo e img5/l _ _10_1m_box_ e img5/l _ _10_gome2_box_ e img5/l _ _10_gome2_ e img5/l _ _10_1m_box_ e img5/l _ _10_gome2_box_ e img5/l _ _10_gome2_ e img6/l _ _10_gome2_80 Synthetic Images Position Scan StDev mean albedo sequence file albedo e syn10/pix80_nd10_p0_10_1m_box_ e syn5/pix80_nd5_p1_10_gome2_box_ e syn5/pix80_nd5_p1_10_gome2_80

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Worst Case Statistics: Bromíne oxide (BrO) Landsat Images (black ROT=46ms, blue ROT=6ms) Position Scan StDev mean albedo sequence file albedo e img5/l _ _10_1m_box_ e img6/l _ _10_gome2_box_ e img6/l _ _10_gome2_ e img15/p18r32_ _10_1m_box_ e img6/l _ _10_gome2_box_ e img6/l _ _10_gome2_ e img6/l _ _10_gome2_80 Synthetic Images Position Scan StDev mean albedo sequence file albedo e syn3/pix80_nd3_p1_10_1m_box_ e syn5/pix80_nd5_p1_10_gome2_box_ e syn5/pix80_nd5_p1_10_gome2_80

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Worst Case Statistics: Chlorine dioxide (OClO) Landsat Images (black ROT=46ms, blue ROT=6ms) Position Scan StDev mean albedo sequence file albedo e img5/l _ _10_1m_box_ e img5/l _ _10_gome2_box_ e img5/l _ _10_gome2_ e img5/l _ _10_1m_box_ e img15/p18r32_ _10_gome2_box_ e img15/p18r32_ _10_gome2_ e img6/l _ _10_gome2_80 Synthetic Images Position Scan StDev mean albedo sequence file albedo e syn10/pix80_nd10_p0_10_1m_box_ e syn5/pix80_nd5_p1_10_gome2_ e syn5/pix80_nd5_p1_10_gome2_box_80

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Worst case differential albedo error spectra Landsat images 40X80 km 2 pixel ROT=46ms  O3 blue: albedo sequence (w/o units) red: albedo error spectra  BrO

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Worst case differential albedo error spectra (2) Landsat images 40X80 km 2 pixel ROT=46ms NO2  blue: albedo sequence (w/o units) red: albedo error spectra OClO 

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Summary: largest StDev of albedo error spectrum observed without convolution of slit function maximum error in synthetic spectra about a factor of 2-5 higher than maximum error observed in Landsat images. basically no differences in StDev due to slit function shape (boxcar vs measured bell like shape) smaller pixel size (40X40 km2) leads to higher albedo error StDev by a factor of up to 2. Reduction in ROT (read-out-time) to 6ms reduces albedo error statistics by a factor of about 10

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 II.) Error analysis analysis of 40X80 km2 GOME2 pixel with ROT of 46 ms and 6ms (gome2_80 cases) only Landsat images considered since Landsat images are not statistically representative (few images, low fractional cloud cover), analysis has been limited to the worst case scenarios identified  intensity perturbation recalculated for proper mean albedo of corresponding worst case scenario  no instrument noise  four trace gas scenarios considered: (1) January 55N, (2) April 55N (free tropospheric BrO case), (3) July 5N (bio mass burning), (4) October 75S (ozone hole scenario, BrO plume)  3 LOS: east (-44°, pixel 1), nadir (0°, pixel 12), west (+44°, pixel 24)

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Ozone: Legend: solid: Jan 55N (1) dotted: Apr 55N (2) dashed: Jul 5N (3) dash-dotted: Oct 75S (4) blue: 49ms, red: 6ms triangles: maximum SC error squares: minimum SC error  maximum SC error: 0.02% (0.002% 6ms)

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Nitrogen Dioxide: Legend: solid: Jan 55N (1) dotted: Apr 55N (2) dashed: Jul 5N (3) dash-dotted: Oct 75S (4) blue: 49ms, red: 6ms triangles: maximum SC error squares: minimum SC error  maximum SC error: 2% (0.2% 6ms)

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Bromine Oxide: Legend: solid: Jan 55N (1) dotted: Apr 55N (2) dashed: Jul 5N (3) dash-dotted: Oct 75S (4) blue: 49ms, red: 6ms triangles: maximum SC error squares: minimum SC error  maximum SC error: 1% (1% 6ms)

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Chlorine dioxide: Legend: solid: Jan 55N (1) dotted: Apr 55N (2) dashed: Jul 5N (3) dash-dotted: Oct 75S (4) blue: 49ms, red: 6ms triangles: maximum SC error squares: minimum SC error  maximum SC error (Oct 75S only ): 10% (2% 6ms)

GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 Conclusion: SC Error due to spatial aliassing is small  maximum error of 0.02% for ozone, 2% for NO2, 1% for BrO, and 10% for OClO in ozone hole scenario  explanations:  small DOAS windows (<<1024 detector pixels)  finite slit width (IFOV of 0.29° ~ 4 km on ground)  errors generally larger at low SZA (low SC in tropics) spatial aliassing errors below errors due to instrumental noise Detector read-out of 6ms reduces error by about a factor of 8, but is probably not needed for GOME2