Applied Quantitative Analysis and Practices LECTURE#09 By Dr. Osman Sadiq Paracha.

Slides:



Advertisements
Similar presentations
Chapter 3, Numerical Descriptive Measures
Advertisements

Measures of Dispersion
Statistics for Managers using Microsoft Excel 6th Edition
Descriptive Statistics: Numerical Measures
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Chap 3-1 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 3 Describing Data: Numerical.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 2-1 Statistics for Business and Economics 7 th Edition Chapter 2 Describing Data:
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 3-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Statistics for Managers Using Microsoft® Excel 4th Edition
1 Pertemuan 02 Ukuran Numerik Deskriptif Matakuliah: I0262-Statistik Probabilitas Tahun: 2007.
Basic Business Statistics 10th Edition
Statistics for Managers using Microsoft Excel 6th Global Edition
Chap 3-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 3 Describing Data: Numerical Statistics for Business and Economics.
12.3 – Measures of Dispersion
Descriptive Statistics  Summarizing, Simplifying  Useful for comprehending data, and thus making meaningful interpretations, particularly in medium to.
Describing Data: Numerical
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 3-1 Chapter 3 Numerical Descriptive Measures Statistics for Managers.
LECTURE 12 Tuesday, 6 October STA291 Fall Five-Number Summary (Review) 2 Maximum, Upper Quartile, Median, Lower Quartile, Minimum Statistical Software.
Chapter 3 - Part B Descriptive Statistics: Numerical Methods
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Numerical Descriptive Techniques
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Descriptive Statistics: Numerical Methods.
LECTURE 8 Thursday, 19 February STA291 Fall 2008.
© Copyright McGraw-Hill CHAPTER 3 Data Description.
Applied Quantitative Analysis and Practices LECTURE#08 By Dr. Osman Sadiq Paracha.
Chapter 3 Descriptive Statistics: Numerical Methods Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
STAT 280: Elementary Applied Statistics Describing Data Using Numerical Measures.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
What is variability in data? Measuring how much the group as a whole deviates from the center. Gives you an indication of what is the spread of the data.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 3 Descriptive Statistics: Numerical Methods.
Lecture 3 Describing Data Using Numerical Measures.
Chap 3-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 3 Describing Data Using Numerical.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 3-1 Chapter 3 Numerical Descriptive Measures Business Statistics, A First Course.
Chapter 3 Data Description Section 3-3 Measures of Variation.
Business Statistics Spring 2005 Summarizing and Describing Numerical Data.
Basic Business Statistics Chapter 3: Numerical Descriptive Measures Assoc. Prof. Dr. Mustafa Yüzükırmızı.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 3-1 Chapter 3 Numerical Descriptive Measures (Summary Measures) Basic Business Statistics.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 3-1 Chapter 3 Numerical Descriptive Measures Basic Business Statistics 11 th Edition.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Statistics topics from both Math 1 and Math 2, both featured on the GHSGT.
Applied Quantitative Analysis and Practices LECTURE#07 By Dr. Osman Sadiq Paracha.
MODULE 3: DESCRIPTIVE STATISTICS 2/6/2016BUS216: Probability & Statistics for Economics & Business 1.
Applied Quantitative Analysis and Practices LECTURE#10 By Dr. Osman Sadiq Paracha.
Statistical Methods © 2004 Prentice-Hall, Inc. Week 3-1 Week 3 Numerical Descriptive Measures Statistical Methods.
Describing Data: Summary Measures. Identifying the Scale of Measurement Before you analyze the data, identify the measurement scale for each variable.
Chapter 2 Describing Data: Numerical
Descriptive Statistics ( )
Statistics for Managers Using Microsoft® Excel 5th Edition
Business and Economics 6th Edition
Descriptive Statistics
Chapter 3 Describing Data Using Numerical Measures
Descriptive Statistics: Numerical Methods
CHAPTER 3 Data Description 9/17/2018 Kasturiarachi.
Chapter 3 Describing Data Using Numerical Measures
Numerical Descriptive Measures
STA 291 Spring 2008 Lecture 5 Dustin Lueker.
STA 291 Spring 2008 Lecture 5 Dustin Lueker.
Numerical Descriptive Measures
Quartile Measures DCOVA
Chapter 2 Exploring Data with Graphs and Numerical Summaries
Numerical Descriptive Measures
MBA 510 Lecture 2 Spring 2013 Dr. Tonya Balan 4/20/2019.
Business and Economics 7th Edition
Numerical Descriptive Measures
Presentation transcript:

Applied Quantitative Analysis and Practices LECTURE#09 By Dr. Osman Sadiq Paracha

Previous Lecture Summary Methods of calculating Measures of variation Contingency Table and Recoding of variables Z-Score Shape of Distribution Quartile measures Box plotting

The Five Number Summary The five numbers that help describe the center, spread and shape of data are:  X smallest  First Quartile (Q 1 )  Median (Q 2 )  Third Quartile (Q 3 )  X largest

Five Number Summary and The Boxplot The Boxplot: A Graphical display of the data based on the five-number summary: Example: X smallest -- Q 1 -- Median -- Q 3 -- X largest 25% of data 25% 25% 25% of data of data of data X smallest Q 1 Median Q 3 X largest

Five Number Summary: Shape of Boxplots If data are symmetric around the median then the box and central line are centered between the endpoints A Boxplot can be shown in either a vertical or horizontal orientation X smallest Q 1 Median Q 3 X largest

Distribution Shape and The Boxplot Right-SkewedLeft-SkewedSymmetric Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3

Boxplot Example Below is a Boxplot for the following data: The data are right skewed, as the plot depicts X smallest Q 1 Q 2 / Median Q 3 X largest

Locating Extreme Outliers: Z-Score (Another Alternative)  To compute the Z-score of a data value, subtract the mean and divide by the standard deviation.  The Z-score is the number of standard deviations a data value is from the mean.  A data value is considered an extreme outlier if its Z- score is less than -3.0 or greater than  The larger the absolute value of the Z-score, the farther the data value is from the mean.

Numerical Descriptive Measures for a Population  Descriptive statistics discussed previously described a sample, not the population.  Summary measures describing a population, called parameters, are denoted with Greek letters.  Important population parameters are the population mean, variance, and standard deviation.

Numerical Descriptive Measures for a Population: The mean µ The population mean is the sum of the values in the population divided by the population size, N μ = population mean N = population size X i = i th value of the variable X Where

Average of squared deviations of values from the mean Population variance: Numerical Descriptive Measures For A Population: The Variance σ 2 Where μ = population mean N = population size X i = i th value of the variable X

Numerical Descriptive Measures For A Population: The Standard Deviation σ Most commonly used measure of variation Shows variation about the mean Is the square root of the population variance Has the same units as the original data Population standard deviation:

Sample statistics versus population parameters MeasurePopulation Parameter Sample Statistic Mean Variance Standard Deviation

The empirical rule approximates the variation of data in a bell-shaped distribution Approximately 68% of the data in a bell shaped distribution is within 1 standard deviation of the mean or The Empirical Rule 68%

Approximately 95% of the data in a bell-shaped distribution lies within two standard deviations of the mean, or µ ± 2σ Approximately 99.7% of the data in a bell-shaped distribution lies within three standard deviations of the mean, or µ ± 3σ The Empirical Rule 99.7% 95%

Using the Empirical Rule  Suppose that the variable Math SAT scores is bell- shaped with a mean of 500 and a standard deviation of 90. Then,  68% of all test takers scored between 410 and 590 (500 ± 90).  95% of all test takers scored between 320 and 680 (500 ± 180).  99.7% of all test takers scored between 230 and 770 (500 ± 270).

Regardless of how the data are distributed, at least (1 - 1/k 2 ) x 100% of the values will fall within k standard deviations of the mean (for k > 1) Examples: (1 - 1/2 2 ) x 100% = 75% … k=2 (μ ± 2σ) (1 - 1/3 2 ) x 100% = 88.89% ……….. k=3 (μ ± 3σ) Chebyshev Rule Within At least

We Discuss Two Measures Of The Relationship Between Two Numerical Variables Scatter plots allow you to visually examine the relationship between two numerical variables and now we will discuss two quantitative measures of such relationships. The Covariance The Coefficient of Correlation

Lecture Summary Methods of calculating Box Plotting Population descriptive measures Empirical rule Chebyshev rule Scatter Plot Application in SPSS