University of Notre Dame Department of Risk Management and Safety.

Slides:



Advertisements
Similar presentations
Radiation Safety Innov-X Systems X-Ray Fluorescence
Advertisements

Radiation biology and protection in dental radiology
University of Notre Dame Department of Risk Management and Safety.
For the Boy Scouts of America by The Pennsylvania State University, American Nuclear Society Student Section Spring 2005 Nuclear Science Merit Badge Workshop.
Basic of radiation Prof. Dr. Moustafa. M. Mohamed Vice Dean
Radiation Units & Quantities
Radiologic Units. Intensity Radiation intensity is the amount of energy passing through a given area that is perpendicular to the direction of radiation.
Radiation Exposure, Dose and Relative Biological Effectiveness in Medicine Background Image:
2 - 1 CH 104 Chapter 3: Nuclear Chemistry Radioactivity Nuclear Equations Radiation Detection Half-Life Medical Applications Fission & Fusion.
Chapter 4 Radioactivity and Medicine A CT scan (computed tomography) of the brain using X-ray beams.
PHYSICS 345 Introduction Radiation Safety The first experiment(s)
Radioactive Materials Safety Training Massachusetts Institute of Technology Radiation Protection Program.
1 Chapter 9 Nuclear Radiation 9.1 Natural Radioactivity.
ACADs (08-006) Covered Keywords Roentgen, gray, exposure rates, absorbed dose, dose equivalent, quality factors, linear energy transfer, relative biological.
Radiation Samar El-Sayed. Radiation Radiation is an energy in the form of electro-magnetic waves or particulate matter, traveling in the air.
Physical Science Lecture 106 Instructor: John H. Hamilton.
Radiation & Radioactivity
Radiological Hazards Instructional Goal To help you understand the potential health hazards of radioactive sources that could be associated with a hazardous.
[
ANALYTICAL X-RAY SAFETY User Training Centre for Environmental Health, Safety and Security Management.
Presenter_On-Site_00 1 Radiation Protection Fundamentals Craig Maxwell - RCT Radiation Protection Group Lawrence Berkeley National Laboratory.
BASIC PRINCIPLES IN OCCUPATIONAL HYGIENE Day IONIZING RADIATION.
IONIZING RADIATION ….. a discussion of the health hazards associated with handling and use of materials capable of producing ionization of matter.
Radiation. Ionising Radiation Alpha Radiation Beta Radiation Gamma Rays X-Rays Neutrons.
Radioactivity Chapter 10 section 1 page
Nuclear _____________of atom is changed Particles or energy is absorbed or emitted from nucleus Can involve one atom or multiple atoms New elements can.
RADIATION SAFETY ORIENTATION COURSE. Ionizing Radiation - can deposit energy in neighboring atoms resulting in the removal of electrons. NUCLEAR RADIATION.
Special Relativity Study Questions PHYS 252 Dr. Varriano.
Fundamentals of Radiation
Transmutation Transmutation is the process of atoms of unstable nuclide A changing into atoms of nuclide B. This can occur naturally (by radioactive decay)
B: Radioactive Decay. There are about 350 isotopes of 90 elements found in our solar system. Of these, about 70 are radioactive. Naturally occurring radioisotopes.
Radiation Concepts Target Audience: Middle and High School
Detecting Radiation in our Radioactive World. Nuclear Technology in our Lives Eaten Eggs? Driven over a Metal Bridge? Attached a Postage Stamp? Use Contact.
/0409 Copyright ©2004 Business and Legal Reports, Inc. BLR’s Safety Training Presentations Ionizing Radiation 29 CFR
1 IONIZING RADIATION. 2 Non-Ionizing Radiation Does not have enough energy to remove electrons from surrounding atoms.
Introduction to Radioisotopes: Measurements and Biological Effects
Nuclear Chemistry.
Internal Radiation Dosimetry Lab 9. Radiation Measurement We use different terms depending on whether: 1.The radiation is coming from a radioactive source.
Chapter 10: Nuclear Chemistry
NUCLEAR VS. CHEMICAL CHEMICAL reactions involve rearranging of atoms: e.g., H 2 +O 2  H 2 O No new atoms are created. Chemistry involves electrons only.
1. 2 Radiation Safety 3 What is Radiation? Radiation is a form of energy. It is emitted by either the nucleus of an atom or an orbital electron. It.
1 Health Safety & Radiation Protection (RAD 453) Course : بسم الله الرّحمن الرّحيم Chapter 1: Fundamental Radiation Concepts Omrane KADRI, Ph.D.
APHY398C 6/4/ Dosimetry   Quantifying the incidence of various biological changes as a function of the radiation dose.   Exposure Ratio of total.
1 WEEK 7 RADIATION BIOLOGY & PROTECTION Part 1 FINAL.
What is Radiation? The transfer of energy in the form of particles or waves from one object to another though a medium. Module #2.
Ferris State University & Michigan Department of Career Development 1 Radiation Safety Answer Key.
DOSIMETRIC UNITS AND BIOLOGICAL EFFECTS OF RADIATION (W. R. LEO) DOSIMETRIC UNITS AND BIOLOGICAL EFFECTS OF RADIATION (W. R. LEO) 12/06/2010Emrah Tiras,
Radiation Safety and You Brian Kessler Zettl Group Safety Talk September 7, 2006.
Interactions of radiation with Matter
1 Chapter 9 Nuclear Radiation 9.1 Natural Radioactivity Copyright © 2009 by Pearson Education, Inc.
Ferris State University & Michigan Department of Career Development 1 Radiation Safety Study Guide.
30.1 X-rays and radioactivity
10.1 Radioactivity Understand Radioactivity and distinguish between the types of decay.
Chapter 10: Nuclear Chemistry
Radiation Basics Mary Lou Dunzik-Gougar, PhD Idaho State University/Idaho National Laboratory ANS Teachers’ Workshop Anaheim, CA November 2014.
Chapter 10 Nuclear Chemistry.
Radiation Units. 1-Radioactivity Units n Physical Units – Becquerel n Amount of radioactive sample s.t. there is 1 atomic decay per second n Henri Becquerel:
2/20/2016Chapter N*31 Radiation Exposure, Dose and Quantity Exposure is an index of the ability of a radiation field to ionize air. Dose is a measure of.
Higher Physics Radiation Dosimetry.
Radiation Basics Mary Lou Dunzik-Gougar, PhD Idaho State University/Idaho National Laboratory ANS Teachers’ Workshop Reno, NV 2014.
Radiation Overview General Introduction to Radiation Terms and Concepts.
BASIC PRINCIPLES IN OCCUPATIONAL HYGIENE
Louisiana State University Radiation Safety Office
IONIZING RADIATION ….. a discussion of the health hazards associated with handling and use of materials capable of producing ionization of matter.
Electromagnetic Radiation
IONIZING RADIATION 1.Introduce self
Radiation Safety sidpec 11/24/2018.
Presentation transcript:

University of Notre Dame Department of Risk Management and Safety

Machine Produced Radiation Safety Training University of Notre Dame Risk Management and Safety

Radiation Safety Overview –Ionizing Radiation Sources Effects Dosage –Risks of Exposure –Minimizing Risk –Safety in Radiation Producing Machine Use

Ionizing Radiation Radiation –Energy in the form of a Particle or Electromagnetic Wave –Emitted from atoms or via effects applied to charged particles Ionizing Radiation –Radiation with sufficient Energy to eject an electron from an atom

Ionizing Radiation - Sources Sources –Extraterrestrial Cosmic Radiation Solar Radiation –Terrestrial Atomic Decay Radiation Producing Machines Particle Accelerators Nuclear Reactors –Internal Atomic Decay Types of Ionizing Radiation – Alpha particles Radioactive decay He nucleus – Beta particles Radioactive decay / particle accelerators “free” electron – Neutrons Radioactive decay / nuclear reactors Particle – X-rays/Gamma Rays Radioactive decay Radiation Producing Machines Electromagnetic Wave

Ionizing Radiation Radiation –Energy in the form of a Particle or Electromagnetic Wave –Emitted from atoms or via effects applied to charged particles Ionizing Radiation –Radiation with sufficient Energy to eject an electron from an atom

Radiation Safety Overview –Ionizing Radiation Sources Effects Dosage –Risks of Exposure –Minimizing Risk –Safety in Radiation Producing Machine Use

Ionizing Radiation - Effects X-ray Radiation –Primary radiation source for diffraction experiments –Penetrates matter –Dose depends on several factors “Hardness” of X-rays Exposure time Distance Effects of Ionizing Radiation – Energy from radiation can eject an electron Radical formation Radicals react strongly with other molecules – Scission of atomic bonds Fragmentation of molecules

Ionizing Radiation - Effects Effects: –Most of the damage is rapidly repaired –If repair is faulty, burns (erythema) and mutations can occur –Erythema most common side-effect –Mutations include: Alteration of local DNA Cancer –Cell Death Exposure – Units are measured in Röntgen (Roentgen) (R) – 1 Röntgen is 2.58 x Coulomb (C) of charge yielded by energy given to 1 kg of air. – Usually measured in milliRöntgen (mR) – Doses measured in mR/h

Ionizing Radiation - Dosage Radiation Absorbed Dose (RAD) –Quantifies amount of energy released to matter from any radiation source –1 RAD = 100 erg/g of matter –Measured in Gray (Gy) –1 Gy = 1 J/kg = 100 RAD Radiation Equivalent Man (REM) – Quantifies biological impact of a radiation dose – rem = RAD x weighting factor – Weighting factor accounts for radiation type X-rays = 1 Alpha particle = 20 – Measured in Sieverts (Sv) 100 mrem = 1 Sv

Ionizing Radiation - Dosage Radiation Limits –Set by the World Health Organization (WHO) via Nuclear Regulatory Committee (NRC) –500 mrem/yr –Exposure is chronic Sources Contributing to Count – Background ~300 mrem/yr Radon Ingested Food Terrestrial Cosmic Radiation – Indirect Medical X-rays ~50 mrem/yr – Direct Medical X-rays

Ionizing Radiation There is thought to be no lower limit to potential detrimental effects occurring from an exposure Small increase in birth defects and cancers due to acute exposure. Cancer risk increase is 0.04% per rem of exposure

Radiation Notices Radiation Producing Machines are required to display a notification when energized Clear notification of an open port/open shutter must be apparent (visual notification)

Exposure Prevention Length of time –“Fleeting” exposure? –Prolonged exposure? Long period of time allows more radiation to be absorbed, higher risk of deleterious effects Minimize amount of time near a potential radiation source Shielding – Appropriate for Radiation? – Appropriate for Instrument? Distance – Radiation “suffers” from a 1/r 2 decay from source – Radiation is absorbed by matter; air is matter – Energy dependant Cu radiation more absorbed in air than Mo radiation

Ionizing Radiation - Effects X-ray Radiation –Primary radiation source for diffraction experiments –Penetrates matter –Dose depends on several factors “Hardness” of X-rays Exposure time Distance Effects of Ionizing Radiation – Energy from radiation can eject an electron Radical formation Radicals react strongly with other molecules – Scission of atomic bonds Fragmentation of molecules

Ionizing Radiation - Effects Effects: –Most of the damage is rapidly repaired –If repair is faulty, burns (erythema) and mutations can occur –Erythema most common side-effect –Mutations include: Alteration of local DNA Cancer –Cell Death Exposure – Units are measured in Röntgen (Roentgen) (R) – 1 Röntgen is 2.58 x Coulomb (C) of charge yielded by energy given to 1 kg of air. – Usually measured in milliRöntgen (mR) – Doses measured in mR/h

Ionizing Radiation - Dosage Radiation Absorbed Dose (RAD) –Quantifies amount of energy released to matter from any radiation source –1 RAD = 100 erg/g of matter –Measured in Gray (Gy) –1 Gy = 1 J/kg = 100 RAD Radiation Equivalent Man (REM) – Quantifies biological impact of a radiation dose – rem = RAD x weighting factor – Weighting factor accounts for radiation type X-rays = 1 Alpha particle = 20 – Measured in Sieverts (Sv) 100 mrem = 1 Sv

Ionizing Radiation - Dosage Radiation Limits –Set by the World Health Organization (WHO) via Nuclear Regulatory Committee (NRC) –500 mrem/yr –Exposure is chronic Sources Contributing to Count – Background ~300 mrem/yr Radon Ingested Food Terrestrial Cosmic Radiation – Indirect Medical X-rays ~50 mrem/yr – Direct Medical X-rays

Ionizing Radiation There is thought to be no lower limit to potential detrimental effects occurring from an exposure Small increase in birth defects and cancers due to acute exposure. Cancer risk increase is 0.04% per rem of exposure

Ionizing Radiation - Effects Effects: –Most of the damage is rapidly repaired –If repair is faulty, burns (erythema) and mutations can occur –Erythema most common side-effect –Mutations include: Alteration of local DNA Cancer –Cell Death Exposure – Units are measured in Röntgen (Roentgen) (R) – 1 Röntgen is 2.58 x Coulomb (C) of charge yielded by energy given to 1 kg of air. – Usually measured in milliRöntgen (mR) – Doses measured in mR/h

Ionizing Radiation - Dosage Radiation Absorbed Dose (RAD) –Quantifies amount of energy released to matter from any radiation source –1 RAD = 100 erg/g of matter –Measured in Gray (Gy) –1 Gy = 1 J/kg = 100 RAD Radiation Equivalent Man (REM) – Quantifies biological impact of a radiation dose – rem = RAD x weighting factor – Weighting factor accounts for radiation type X-rays = 1 Alpha particle = 20 – Measured in Sieverts (Sv) 100 mrem = 1 Sv

Ionizing Radiation - Dosage Radiation Limits –Set by the World Health Organization (WHO) via Nuclear Regulatory Committee (NRC) –500 mrem/yr –Exposure is chronic Sources Contributing to Count – Background ~300 mrem/yr Radon Ingested Food Terrestrial Cosmic Radiation – Indirect Medical X-rays ~50 mrem/yr – Direct Medical X-rays

Ionizing Radiation There is thought to be no lower limit to potential detrimental effects occurring from an exposure Small increase in birth defects and cancers due to acute exposure. Cancer risk increase is 0.04% per rem of exposure

Ionizing Radiation - Dosage Radiation Limits –Set by the World Health Organization (WHO) via Nuclear Regulatory Committee (NRC) –500 mrem/yr –Exposure is chronic Sources Contributing to Count – Background ~300 mrem/yr Radon Ingested Food Terrestrial Cosmic Radiation – Indirect Medical X-rays ~50 mrem/yr – Direct Medical X-rays

Ionizing Radiation There is thought to be no lower limit to potential detrimental effects occurring from an exposure Small increase in birth defects and cancers due to acute exposure. Cancer risk increase is 0.04% per rem of exposure

Radiation Notices International Standards for Radiological Work Magenta-on-Yellow or Black-on-Yellow Trefoil Notices must be apparent and external to the work area

Radiation Notices Radiation Producing Machines are required to display a notification when energized Clear notification of an open port/open shutter must be apparent (visual notification)

Exposure Risks Radiation Producing Machines (RPM) –RPM X-rays are “soft” Nearly all of energy is deposited in matter Primary Beam –Acute exposure –High dose (100’s – 1000’s of R/min) –Less likely due to beam-stop Secondary Scatter – Lower count rate (~0.2 mR/h) – More likely since is scattered radiation from sample – Extremity rather than whole body – Easily detected with a radiation counter

Exposure Prevention Length of time –“Fleeting” exposure? –Prolonged exposure? Long period of time allows more radiation to be absorbed, higher risk of deleterious effects Minimize amount of time near a potential radiation source Shielding – Appropriate for Radiation? – Appropriate for Instrument? Distance – Radiation “suffers” from a 1/r 2 decay from source – Radiation is absorbed by matter; air is matter – Energy dependant Cu radiation more absorbed in air than Mo radiation

Exposure Prevention Distance Decay I 2 = I 1. (x 1 /x 2 ) 2 –I 2 = Dose at x 2 –I 1 = Dose at x 1 –x 1 = Distance 1 –x 2 = Distance 2 Sample is measured at 25 mR/h at 0.1 m from source, what is the dose at 0.3 m from the source 25 mR/h x (0.1/0.5) 2 25 mR/h x 0.04 = 1mR/h Nota Bene: On Radiation Producing Machines the counter should read no more than 0.2 mR/h at 5 cm from the sample (back scatter)

Exposure Prevention Shielding –Primary prevention/protection –Appropriate Shielding is required Radiation sources and appropriate shielding –Alpha particle: Paper –Beta particle: Plastic/thin metal – X-rays: metal sheeting/leaded glass – Gamma Rays: lead-lined metal sheeting – Neutrons: Concrete Do NOT remove radiation shielding – Contact a supervisor or Radiation Safety Officer if you need to do so Do NOT override safety interlocks

Pregnancy – A Right to Declare A pregnant co-worker has the right to declare the pregnancy Declaration must be in writing, dated and signed If a pregnancy is declared, the dose limit to the foetus is 500 mrem over the entire pregnancy (<45 mrem/month) The declaration may be revoked If a pregnancy is not declared, no special safety considerations are implemented

Safety Guidelines First and foremost: Safety is Common Sense All of the commentary leads to: ALARA As Low As Reasonably Achievable Consider what you are doing Consider what the risks are Minimize those risks Be Mindful

Safety Guidelines First and foremost: Safety is Common Sense All of the commentary leads to: ALARA As Low As Reasonably Achievable Consider what you are doing Consider what the risks are Minimize those risks Be Mindful

Pregnancy – A Right to Declare A pregnant co-worker has the right to declare the pregnancy Declaration must be in writing, dated and signed If a pregnancy is declared, the dose limit to the foetus is 500 mrem over the entire pregnancy (<45 mrem/month) The declaration may be revoked If a pregnancy is not declared, no special safety considerations are implemented

Safety Guidelines The campus Radiation Safety Manual is available in the Laboratory At any time you may utilize the Geiger counter if you are unsure about the radiation safety of an instrument If you have a concern you may: contact a supervisor, the Radiation Safety Specialist (Notre Dame: Andy Welding, RM&S, ext ), the Nuclear Regulatory Commission (NRC, )(radioactive materials), or the Indiana State Department of Health (ISDH, )(machines.) Please contact a supervisor first if possible. If there is an accident call 911 or from a campus phone

General Laboratory Safety The X-ray Facility is considered a Laboratory Please exercise the same precautions you would in any Laboratory: –Long pants/dress (below knee length) –Close-toed shoes –No Food in the Facility –No Drink in the Facility –Be mindful of your actions

Machine Produced Radiation Safety Training University of Notre Dame Risk Management and Safety

Radiation Safety Overview –Ionizing Radiation Sources Effects Dosage –Risks of Exposure –Minimizing Risk –Safety in Radiation Producing Machine Use

Ionizing Radiation Radiation –Energy in the form of a Particle or Electromagnetic Wave –Emitted from atoms or via effects applied to charged particles Ionizing Radiation –Radiation with sufficient Energy to eject an electron from an atom

Ionizing Radiation - Sources Sources –Extraterrestrial Cosmic Radiation Solar Radiation –Terrestrial Atomic Decay Radiation Producing Machines Particle Accelerators Nuclear Reactors –Internal Atomic Decay Types of Ionizing Radiation – Alpha particles Radioactive decay He nucleus – Beta particles Radioactive decay / particle accelerators “free” electron – Neutrons Radioactive decay / nuclear reactors Particle – X-rays/Gamma Rays Radioactive decay Radiation Producing Machines Electromagnetic Wave