Field Effect Transistor. What is FET FET is abbreviation of Field Effect Transistor. This is a transistor in which current is controlled by voltage only.

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

Field Effect Transistor characteristics
J-FET (Junction Field Effect Transistor) Introduction The field-effect transistor (FET) controls the current between two points but does so differently.
Transistors These are three terminal devices, where the current or voltage at one terminal, the input terminal, controls the flow of current between the.
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
NAME OF FACULTY : MR. Harekrushna Avaiya DEPARTMENT: E.C. (PPI-1ST) BASIC ELECTRONICS.
The metal-oxide field-effect transistor (MOSFET)
Field Effect Transistor (FET)
Chapter 5 – Field-Effect Transistors (FETs)
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 20.1 Field-Effect Transistors  Introduction  An Overview of Field-Effect.
Field Effect Transistors Topics Covered in Chapter : JFETs and Their Characteristics 30-2: Biasing Techniques for JFETs 30-3: JFET Amplifiers 30-4:
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Chapter 28 Basic Transistor Theory. 2 Transistor Construction Bipolar Junction Transistor (BJT) –3 layers of doped semiconductor –2 p-n junctions –Layers.
By Squadron Leader Zahid Mir CS&IT Department, Superior University PHY-BE -21 Field Effect Transistor.
Semiconductor Devices III Physics 355. Transistors in CPUs Moore’s Law (1965): the number of components in an integrated circuit will double every year;
09/16/2010© 2010 NTUST Today Course overview and information.
Transistors Three-terminal devices with three doped silicon regions and two P-N junctions versus a diode with two doped regions and one P-N junction Two.
Field-Effect Transistor
Field-Effect Transistors
Recap in Unit 2 EE2301: Block B Unit 2.
FET ( Field Effect Transistor)
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
Chapter 5: Field–Effect Transistors
Principles & Applications
Field Effect Transistor (FET)
Field Effect Transistors Next to the bipolar device that has been studied thus far the Field Effect Transistor is very common in electronic circuitry,
G.K.BHARAD INSTITUTE OF ENGINEERING DIVISION :D (C.E.) Roll Number :67 SUBJECT :PHYSICS SUBJECT CODE : Presentation By: Kartavya Parmar.
Field Effect Transistors By Er. S.GHOSH
Chapter 5: Field Effect Transistor
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 5-1 Electronics Principles & Applications Eighth Edition Chapter 5 Transistors.
BJT Band diagram Analysis تجزيه وتحليل دياگرام باند انرژي.
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
DMT121 – ELECTRONIC DEVICES
Filed Effect Transistor.  In 1945, Shockley had an idea for making a solid state device out of semiconductors.  He reasoned that a strong electrical.
Chapter 2 – Transistors – Part 2 Field Effect Transistors (Unipolar Transistors) (Charge carriers: either electrons or holes)
Field Effect Transistors
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
ISAT 436 Micro-/Nanofabrication and Applications Transistors David J. Lawrence Spring 2004.
MOSFET Placing an insulating layer between the gate and the channel allows for a wider range of control (gate) voltages and further decreases the gate.
CHAP3: MOS Field-Effect Transistors (MOSFETs)
Junction Field Effect Transistor
1 Other Transistor Topologies 30 March and 1 April 2015 The two gate terminals are tied together to form single gate connection; the source terminal is.
1 DMT 121 – ELECTRONIC DEVICES CHAPTER 5: FIELD-EFFECT TRANSISTOR (FET)
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
CHAPTER 5 FIELD EFFECT TRANSISTORS(part c) (FETs).
Field Effect Transistor (FET)
Farzana R. ZakiCSE 177/ EEE 1771 Lecture – 19. Farzana R. ZakiCSE 177/ EEE 1772 MOSFET Construction & operation of Depletion type MOSFET Plotting transfer.
Field-effect transistors (FETs)
Field Effect Transistors
FET FET’s (Field – Effect Transistors) are much like BJT’s (Bipolar Junction Transistors). Similarities: • Amplifiers • Switching devices • Impedance matching.
Government Engineering College Bharuch Metal Oxide Semiconductor Field Effect Transistors{MOSFET} Prepared by- RAHISH PATEL PIYUSH KUMAR SINGH
course Name: Semiconductors
COURSE NAME: SEMICONDUCTORS Course Code: PHYS 473 Week No. 9.
SILVER OAK COLLEGE OF ENGG. & TECHNOLOGY  SUB – Electronics devices & Circuits  Topic- JFET  Student name – Kirmani Sehrish  Enroll. No
Hardik Patel & Jatin Patel
FET ( Field Effect Transistor) 1.Unipolar device i. e. operation depends on only one type of charge carriers (h or e) 2.Voltage controlled.
FET JFET MOSFET Introduction  The MOSFET (metal oxide semiconductor field effect transistor) It is another category of field effect transistor.
J-FET (Junction Field Effect Transistor)
MOSFET The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a semiconductor device which is widely used for switching and amplifying.
Field Effect Transistors: Operation, Circuit Models, and Applications
MOS Field-Effect Transistors (MOSFETs)
Instrumentation & Power Electronic Systems
ChapTer FiVE FIELD EFFECT TRANSISTORS (FETs)
Intro to Semiconductors and p-n junction devices
DMT 121 – ELECTRONIC DEVICES
MOSFET POWERPOINT PRESENTATION BY:- POONAM SHARMA LECTURER ELECTRICAL
FIELD EFFECT TRANSISTOR
LECTURE # 8 FIELD EFFECT TRANSISTOR (FET)
Presentation transcript:

Field Effect Transistor

What is FET FET is abbreviation of Field Effect Transistor. This is a transistor in which current is controlled by voltage only and no current is drawn. It is a high input impedance device and is used in computers, telecommunication and control circuits. This transistor is better in certain parameters as compared to BJT, that is Bipolar Junction Transistor.

A field-effect transistor (FET) is a type of transistor commonly used for weak-signal amplification (for example, for amplifying wireless signals). The device can amplify analog or digital signals. It can also switch DC or function as an oscillator. transistor wireless analogdigital

In the FET, current flows along a semiconductor path called the channel. At one end of the channel, there is an electrode called the source. At the other end of the channel, there is an electrode called the drain. The physical diameter of the channel is fixed, but its effective electrical diameter can be varied by the application of a voltage to a control electrode called the gate. The conductivity of the FET depends, at any given instant in time, on the electrical diameter of the channel. A small change in gate voltage can cause a large variation in the current from the source to the drain. This is how the FET amplifies signals.

Classification of FET Field-effect transistors exist in two major classifications. These are known as the junction FET (JFET) and the metal-oxide- semiconductor FET (MOSFET)

JFET The junction FET has a channel consisting of N-type semiconductor (N-channel) or P-type semiconductor (P-channel) material; the gate is made of the opposite semiconductor type. In P-type material, electric charges are carried mainly in the form of electron deficiencies called holes. In N-type material, the charge carriers are primarily electrons. In a JFET, the junction is the boundary between the channel and the gate. Normally, this P-N junction is reverse-biased (a DC voltage is applied to it) so that no current flows between the channel and the gate. However, under some conditions there is a small current through the junction during part of the input signal cycle. electron

MOSFET In the MOSFET, the channel can be either N-type or P-type semiconductor. The gate electrode is a piece of metal whose surface is oxidized. The oxide layer electrically insulates the gate from the channel. For this reason, the MOSFET was originally called the insulated-gate FET (IGFET), but this term is now rarely used. Because the oxide layer acts as a dielectric, there is essentially never any current between the gate and the channel during any part of the signal cycle. This gives the MOSFET an extremely large input impedance. Because the oxide layer is extremely thin, the MOSFET is susceptible to destruction by electrostatic charges. Special precautions are necessary when handling or transporting MOS devices.impedance

Advantages / Disadvantages The FET has some advantages and some disadvantages relative to the bipolar transistor. Field-effect transistors are preferred for weak-signal work, for example in wireless communications and broadcast receivers. They are also preferred in circuits and systems requiring high impedance. The FET is not, in general, used for high-power amplification, such as is required in large wireless communications and broadcast transmitters.bipolar transistorwireless

Field-effect transistors are fabricated onto silicon integrated circuit (IC) chips. A single IC can contain many thousands of FETs, along with other components such as resistors, capacitors, and diodes.

JFET Construction and Operation A schematic representation of an n channel JFET is shown in Figure An n-type channel is formed between two p-type layers which are connected to the gate. Majority carrier electrons flow from the source and exit the drain, forming the drain current. The pn junction is reverse biased during normal operation, and this widens the depletion layers which extend into the n channel only (since the doping of the p regions is much larger than that of the n channel). As the depletion layers widen, the channel narrows, restricting current flow.

MOSFET Construction and Operation MOSFET transistors have metal gates which are insulated from the semiconductor by a layer of SiO2 or other dielectric. In enhancement type MOSFETs, the application of a gate voltage activates the channel (by inducing a layer of carriers between source and drain under the gate, Figure 121). In depletion type MOSFETs, there is a small strip of semiconductor of the same type as that of the source and drain, and the gate voltage can either reduce (by depleting carriers) or increase (by increasing carriers) the channel current (Figure 122). In an n channel MOSFET, the conducting channel exists in a p type substrate.. Note the additional B terminal on the substrate, which is often connected directly to the source Figure 121: n-channel E FET structure Figure 122: n-channel D FET structure

JFET Characteristics The circuit of Figure 123 will be used to study the JFET characteristics. The JFET is a nonlinear device. The voltage sources VGG and VDD will be adjusted.123 A graph of the JFET characteristics, iD versus vDS and iD versus vGS is shown in Figure