GOSSIP : Gas On Slimmed SIlicon Pixels NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay.

Slides:



Advertisements
Similar presentations
Detector R&D Jan Timmermans Programme: ≥ 2003
Advertisements

Amsterdam, March 31, 2003 P. Colas - European R&D for gaseous trackers 1 European gaseous tracking hardware HistoryHistory GEM and MicromegasGEM and Micromegas.
M. Chefdeville NIKHEF, Amsterdam MPGD, Hawaii 07
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Amsterdam, April 2,2003P. Colas - Micromegas TPC1 Micromegas TPC: New Results and Prospects New tests in magnetic fieldNew tests in magnetic field FeedbackFeedback.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
3-D simulation of Si-Prot Charge distribution, signal development D. Attié, P. Colas, E. Delagnes, S. Turnbull - Introduction - Orders of magnitude - Simulation.
Position sensing in a GEM from charge dispersion on a resistive anode Bob Carnegie, Madhu Dixit, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer,
Status ‘Si readout’ TPC at NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA.
Readout of a TPC with the MEDIPIX2 CMOS chip as direct anode Saclay/DapniaP. Colas Y. Giomataris NIKHEFA. Fornaini H. van der Graaf J. Timmermans J. Visschers.
GridPix for Dual Phase LAr/LXe experiments. Micro Patterned Gaseous Detectors High field created by Gas Gain Grids Most popular: GEM & Micromegas Ideally:
Kolympari, Crete, June 16, Study of avalanche fluctuations and energy resolution with an InGrid-TimePix detector P. Colas Progress report, based.
New Developments in Gaseous Tracking and Imaging Detectors Harry van der Graaf Nikhef, Amsterdam on behalf of the GridPix/Gossip group IWORID 2008 Helsinki.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
Recent progress towards a Pixel-TPC 1. Objectives 2. New Structures (Ingrid,Twingrid,…) + Discharge Protection 3. Gas Studies 4. Testbeam at DESY (Medipix+3GEM)
ECFA Meeting, Valencia – November 8, First TimePix tests at CERN David Attié ECFA Meeting – Valencia – 8 November 2006.
Gain fluctuations and Neff Analysis of March 2010 data Neff measurement Gain fluctuation measurements with TimePix Beijing, 30/03/20101 P. Colas - FJPPL-FCPPL-LCTPC.
1 Pixel readout for a TPC LCWS 2010 – Tracking TPC R&D session 27 March 2010 Jan Timmermans On behalf of the Bonn/CERN/Freiburg/Nikhef/Saclay groups.
1 Silicon Pixel Readout for a TPC ALCPG Fermilab 23 October 2007 Jan Timmermans NIKHEF.
Timepix-3 test All-ceramic InGrid The focusing TPC
Detector Research & Development RECFA, NIKHEF, Amsterdam. Sept 23, 2005 Harry van der Graaf, NIKHEF, Amsterdam.
Annual Meeting 2008 – October 6 th 1 David Attié P. Colas, X. Coppolani, E. Delagnes, A. Giganon, I. Giomataris Status of Saclay.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
GOSSIP a new vertex detector for ATLAS Harry van der Graaf NIKHEF, Amsterdam Univ. of Bonn, Nov 23, 2006.
An Integrated Single Electron Readout System for the TESLA TPC Ton Boerkamp Alessandro Fornaini Wim Gotink Harry van der Graaf Dimitri John Joop Rovekamp.
Micropattern on CMOS pixels NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers.
21 April 2004LCWS 2004 Paris1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct pixel segmented anode) NIKHEF:
The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit,
Beijing, Feb.6, 2007 P. Colas - Micromegas TPC 1 Micromegas TPC studies in a 5 Tesla magnetic field with a resistive readout D. Attié, A. Bellerive, K.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
Timepix at NIKHEFMedipix meeting, CERN – Some recents results at NIKHEF M. Chefdeville, E. Bilevych, H. van de Graaf, J. Timmermans D. Attié,
The Gossip gaseous detector for the ATLAS Upgraded ‘SC’T Harry van der Graaf Nikhef, Amsterdam on behalf of the GridPix/Gossip group ATLAS Tracker Upgrade.
1 Readout of a TPC by Means of the MediPix CMOS Pixel Sensor NIKHEFAuke-Pieter Colijn Arno Aarts Alessandro Fornaini Maximilien Chefdeville Harry van der.
23 March 2005International TPC R&D Meeting Berkeley 1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
GOSSIP & the ATLAS SCT Upgrade Max Chefdeville NIKHEF, Amsterdam ATLAS Upgrade Workshop CERN, Oct 1, 2006.
1 InGrid: the integration of a grid onto a pixel anode by means of Wafer Post Processing technology 16 April 2008 Victor M. Blanco Carballo.
GOSSIP : a vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array Gas On Slimmed SIlicon Pixels.
you me  when it all started to work  progress made  outlook.
1 Update on Silicon Pixel Readout for a TPC at NIKHEF LCWS08 - Chicago 19 Nov 2008 Jan Timmermans NIKHEF.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
1 The Silicon TPC System EUDET Extended SC meeting 31 August 2010 Jan Timmermans NIKHEF/DESY.
1 Status ‘Si readout’ TPC at NIKHEF NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans.
1 The pixel readout of TPCs Max Chefdeville, NIKHEF, Amsterdam.
Vienna, Feb. 17, 2004P. Colas - Micromegas TPC1 First test of a Micromegas TPC in a magnetic field Advantages of a Micromegas TPC for the Linear ColliderAdvantages.
New gaseous detectors: the application of pixel sensors as direct anode NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan.
Gossip/GridPix – guidelines, facts, and questions for review Version 1: Norbert Version 2: Tatsuo Version 3: Werner.
Micromegas (Ingrid)+TimePix 8-chip modules
November 8, 2006ECFA ILC Workshop1 Recent developments for digital TPC readout Jan Timmermans - NIKHEF Micro Pattern Gas Detector: GridPix Integration.
1 The Silicon TPC System EUDET Extended SC meeting 27 August 2007 Jan Timmermans NIKHEF.
LCWS Bangalore, March 13, 2006 P. Colas, Digital TPC R&D1 R&D for a digital TPC The SiTPC project The digital TPC concept and advantages VLSI electronics:
IEEE/NSS Oct 22, Electron Counting and Energy Resolution Study from X-ray conversion in Argon Mixtures with an InGrid-TimePix detector. D. ATTIÉ.
Status report NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA DAPNIAMaximilien.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
Detector R & D Harry van der Graaf NIKHEF Jamboree Dec 19, 2006.
Timepix in EUDet – CERN contribution Michael Campbell PH Department CERN Geneva, Switzerland Spokesman, Medipix2 Collaboration.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
On behalf of the LCTPC collaboration -Uwe Renz- University of Freiburg Albert-Ludwigs- University Freiburg Physics Department.
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
Gossip : Gaseous Pixels Els Koffeman (Nikhef/UvA) (Harry van der Graaf, Jan Timmermans, Jan Visschers, Maximilien Chefdeville, Vladimir Gromov, Ruud Kluit,
The GridPix and Gossip gaseous detectors for the ATLAS Upgraded ‘SC’T Harry van der Graaf Nikhef, Amsterdam on behalf of the GridPix/Gossip group ATLAS.
GOSSIP : a vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array NIKHEFAuke-Pieter Colijn Alessandro Fornaini.
TPC for 4-th concept S.Popescu IFIN-HH, Bucharest.
Experience from ZEUS Microvertex detector is running for more than five years without access! E.N Koffeman NIKHEF & University of Amsterdam.
Micromegas module for ILC-TPC
R&D for a digital TPC The SiTPC project
Avalanche flutuations with InGrid/TimePix
Presentation transcript:

GOSSIP : Gas On Slimmed SIlicon Pixels NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA DAPNIAMaximilien Chefdeville Paul Colas Yannis Giomataris Arnaud Giganon Univ. Twente/Mesa+Jurriaan Schmitz CERN/Medipix ConstmEric Heijne Xavie Llopart Michael Campbell Thanks to: Wim Gotink Joop Rovenkamp

Cathode foil Gem foils Support plate Medipix 2 Drift Space The MediPix2 pixel CMOS chip We apply the ‘naked’ MediPix2 chip without X-ray convertor!

MediPix2 pixel sensor Brass spacer block Printed circuit board Aluminum base plate Micromegas Cathode (drift) plane 55 Fe Baseplate Drift space: 15 mm Very strong E-field above (CMOS) MediPix!

We always knew, but never saw: the conversion of 55 Fe quanta in Ar gas No source, 1s 55 Fe, 1s 55 Fe, 10s Friday 13 (!) Feb 2004: signals from a 55 Fe source (220 e- per photon); 300  m x 500  m clouds as expected 14 mm The Medipix CMOS chip faces an electric field of 350 V/50 μm = 7 kV/mm !!

Eff = e -Thr/G Thr: threshold setting (#e-) G: Gas amplification Prob(n) = 1/G. e -n/G no attachment homogeneous field in avalanche gap low gas gain simple exponential grown of avalanche  No Curran or Polya distributions but simply: Single electron efficiency

New trial: NIKHEF, March 30 – April 2, 2004 Essential: try to see single electrons from cosmic muons (MIPs) Pixel preamp threshold: 3000 e- (due to X-talk) Required gain: 5000 – New Medipix New Micromegas Gas: He/Isobutane 80/20 !Gain up to 30 k! He/CF4 80/20 …… It Works!

He/Isobutane 80/20 Modified MediPix Sensitive area: 14 x 14 x 15 mm 3 Drift direction: Vertical max = 15 mm

He/Isobutane 80/20 Modified MediPix

He/Isobutane 80/20 Modified MediPix

He/Isobutane 80/20 Non Modified MediPix Americium Source

He/Isobutane 80/20 Modified MediPix

He/Isobutane 80/20 Modified MediPix δ-ray?

MediPix modified by MESA+, Univ. of Twente, The Netherlands Pixel Pitch: 55 x 55 μm 2 Bump Bond pad: 25 μm octagonal 75 % surface: pacivation SiN New Pixel Pad: 45 x 45 μm 2 Insulating surface was 75 % Reduced to 20 % Non ModifiedModified

Non Modified Modified Peter Kluit: cluster & electron density versus MC of MIP cosmic rays: single electron efficiency > 0.95 AND: Good explanation for Moire effect:pitch Micromegas holes: 60 μm pitch MediPix pixels:55 μm Periodic position of hole w.r.t. pixel: repeats after 12 pixels!

Modified Non Modified InGrid: perfect alignment of pixels and grid holes! Small pad: small capacitance!

Integrate GEM/Micromegas and pixel sensor ‘GEM’‘Micromegas’ By ‘wafer post processing’ InGrid

First InGrid expected in July Wafer dia.: 100 mm 30 fields with variety of pillar geometry

1.WSLC-Paris 2004: LC ready in 2015…, not known where….. 2.People with power and $: what is the relevance for LHC?! So: Other applications of TimePixGrid: - μ-TPC - upgrades of TPCs: STAR, ALICE - Transition Radiation Detectors - GOSSIP: tracker for intense radiation environment

CMOS pixel array MIP Micromegas GOSSIP: Gas On Slimmed SIlicon Pixels Drift gap: 1 mm Max drift time: 10 ns MIP CMOS pixel chip Cathode foil

Essentials of GOSSIP: Generate charge signal in gas instead of Si (e-/ions versus e-/holes) Amplify # electrons in gas (electron avalanche versus FET preamps) Then: No radiation damage in depletion layer or pixel preamp FETs No power dissipation of preamp FETs GOSSIP:1 mm gas layer + 20 μm gain gap + CMOS (digital!) chip After all: it is a TPC with 1 mm drift length (parallax!) Max. drift length: 1 mm Max. drift time: 10 ns Resolution: 0.1 mm  1 ns

Efficiency Position resolution Rate effects Ageing Radiation hardness HV breakdowns Power dissipation Material budget

Efficiency Single electron efficiency: > 0.95 Number of clusters per mm: 3 (Ar) – 10 (Isobutane) Number of electrons per cluster: 3 (Ar) - ? (Isobutane) Probability to have 1 cluster in 1 mm Ar: 0.95 With nice gas: eff ~ 0.99 in 1 mm thick layer should be possible But……. Parallax error due to 1 mm thick layer, with 3 rd coordinate 0.1 mm: TPC/ max drift time 10 ns / σ = 0.1 mm / σ = 1 ns (not easy….) Lorentz angle We want light ions (rate effect), and little UV photon induced avalanches

Position resolution Transversal coordinates limited by: pixel dimensions: 20 x 20 – 50 x 50 μm 2 Note: we MUST have pixels: no strips (pad capacity/noise) Good resolution in non-bending plane! Pixel number has NO cost consequence (m 2 Si counts) Pixel number has some effect on CMOS power dissipation Diffusion: max. drift length 1 mm: little effect (?) δ-rays Drift coordinate limited by: Pulse height fluctuation gas gain (3 k), pad capacity, # e- per cluster 0Q0Q 20 – 50 ns

Rate effects time 0Q0Q 20 – 50 ns only (average) ~10 e- per track gas gain only 3 k most ions are discharged at grid after traveling time of 20 – 50 ns a few percent enter the drift space: max 2 cm from beam pipe: 10 tracks cm ns MHz cm -2 ! Some ions crossing drift space: takes 20 – 200 μs! B-field should help ion space charge has NO effect on gas gain ion charge may influence drift field, but this does little harm ion charge may influence drift direction (?) Recombination?

Ageing Remember the MSGCs…… Little ageing: the ratio (anode surface)/(gas volume) is very high w.r.t. i.e. MDTs little gas gain (3k) homogeneous drift field + homogeneous multiplication field versus 1/R field of wire. Absence of high E-field close to a wire: no high electron energy; little production of chemical radicals Confirmed by measurements (Alfonsi, Colas)

Radiation hardness CMOS 130 nm technology: OK up to ? rad need only modest input FETs

HV breakdowns 4 Protection Network 1 High-resistive layer 2 High-resistive layer 3 ‘massive’ pads

Power dissipation MediPix2: 1 W/cm 2 preamp power Large part in preamps + 2 discr per pixel For GOSSIP CMOS Pixel chip: - Array of 512 x 512 monostable gates - Row OR, Column OR, decoders, TimeStamp, shift registers 10 M transistors, most in rest  Gas Cooling feasible!

Material budget ‘Slimmed’ Si CMOS chip: 30 μm Si Pixel resistive layer5 μm SiN 2 Anode pads5 μm Al Grid1 μm Al Grid resistive layer5 μm SiN2 Cathode1 μm Al CF string support, gas tubing, power

How to proceed? - InGrid 1 available for tests in July: - rate effects (all except change in drift direction) - ageing  Proof-of-principle of signal generator: Xmas 2004! - InGrid 2: HV breakdowns, beamtests with MediPix (TimePix1 in 2005) - TimePix2: CMOS chip for GOSSIP: CERN MediPix/ATLAS Pixel Needed: calculations/simulations: - PhD student - students - (NIKHEF) vertex experts: i.e. Henk T, Els K, Nigel H, Jos S, Marcel D.