Paradoxes of quantum and statistical mechanics. Dr. Kupervasser Oleg.

Slides:



Advertisements
Similar presentations
Dr Roger Bennett Rm. 23 Xtn Lecture 19.
Advertisements

The Arrow of Time Nearly all fundamental laws of Physics are symmetric in time A process which satisfies these laws can be rewinded to give another physically.
Statistical Physics Approach to Understanding the Multiscale Dynamics of Earthquake Fault Systems Theory.
Thermodynamics versus Statistical Mechanics
Thus in the rotating frame the magnetic field becomes time-independent while the z-magnetic field component is reduced by the frequency of rotation x RoF.
Boltzmann, Shannon, and (Missing) Information
Emergence of Quantum Mechanics from Classical Statistics.
CHEMICAL EQUILIBRIUM Qualitative Aspects. H 2 O (g) H 2(g) + 1/2 O 2(g) ä 1. The double arrow represents an equilibrium reaction. ä 2. The equation for.
Thermodynamic relations for dielectrics in an electric field Section 10.
Case Studies Class 5. Computational Chemistry Structure of molecules and their reactivities Two major areas –molecular mechanics –electronic structure.
A microstate of a gas of N particles is specified by: 3N canonical coordinates q 1, q 2, …, q 3N 3N conjugate momenta p 1, p 2, …, p 3N Statistical Mechanics.
Thermo & Stat Mech - Spring 2006 Class 14 1 Thermodynamics and Statistical Mechanics Kinetic Theory of Gases.
Thermodynamics can be defined as the science of energy. Although everybody has a feeling of what energy is, it is difficult to give a precise definition.
Chapter 3: Heat, Work and Energy. Definitions Force Work: motion against an opposing force dw = - f dxExamples: spring, gravity Conservative Force: absence.
From adiabatic dynamics to general questions of thermodynamics. Anatoli Polkovnikov, Boston University AFOSR R. Barankov, C. De Grandi – BU V. Gritsev.
First law of thermodynamics
Conservation of Entropy ??? The question arose, is entropy conserved? After all, energy is. But a great deal of experimental experience indicated that:
Quantum fermions from classical statistics. quantum mechanics can be described by classical statistics !
Fermions and non-commuting observables from classical probabilities.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Quantum thermodynamics: Thermodynamics at the nanoscale
2nd Law of Thermodynamics 1st Law: energy is conserved But is that enough ? –Object drops converting KE to heat but never see the opposite –H 2 and O 2.
Interaction Between Macroscopic Systems
Thermodynamic principles JAMES WATT Lectures on Medical Biophysics Dept. Biophysics, Medical faculty, Masaryk University in Brno.
ESS 材料熱力學 3 Units (Thermodynamics of Materials)
Objectives of this course
Introduction to (Statistical) Thermodynamics
MSEG 803 Equilibria in Material Systems 6: Phase space and microstates Prof. Juejun (JJ) Hu
Summary: Isolated Systems, Temperature, Free Energy Zhiyan Wei ES 241: Advanced Elasticity 5/20/2009.
What is thermodynamics and what is it for? II. Continuum physics – constitutive theory Peter Ván HAS, RIPNP, Department of Theoretical Physics –Introduction.
Available Energy. First Law of Thermodynamics The increase in internal energy of a system is equal to the heat added plus the work done on the system.
Quantum measurements: status and problems Michael B. Mensky P.N.Lebedev Physical Institute Moscow, Russia MARKOV READINGS Moscow, May 12, 2005.
Conceptual Modelling and Hypothesis Formation Research Methods CPE 401 / 6002 / 6003 Professor Will Zimmerman.
Basic paradoxes of physics and Universal arrow of time Dr. Kupervasser Oleg.
1/14/2014PHY 770 Spring Lecture 11 PHY Statistical Mechanics 10-10:50 AM MWF Olin 107 Instructor: Natalie Holzwarth (Olin 300) Course Webpage:
Stochastic Thermodynamics in Mesoscopic Chemical Oscillation Systems
The “Arrow” of Time In statistical thermodynamics we return often to the same statement of the equilibrium condition Systems will spontaneously tend towards.
Lecture 1 – Introduction to Statistical Mechanics
Supplement – Statistical Thermodynamics
Ch 22 pp Lecture 2 – The Boltzmann distribution.
2/18/2014PHY 770 Spring Lecture PHY Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth.
An Introduction to Statistical Thermodynamics. ( ) Gas molecules typically collide with a wall or other molecules about once every ns. Each molecule has.
Physics II Thermology; Electromagnetism; Quantum physics.
Made by, Vasava vipul [ ]. Thermodynamics Thermodynamics is the science of energy conversion involving heat and other forms of energy, most.
Dr. Owen Clarkin School of Mechanical & Manufacturing Engineering Summary of Energy Topics Chapter 1: Thermodynamics / Energy Introduction Chapter 2: Systems.
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
Lecture from Quantum Mechanics. Marek Zrałek Field Theory and Particle Physics Department. Silesian University Lecture 6.
Physics 176: Lecture 2 Tuesday, 1/18/2011 Before you take your seat: Pick up PRS transmitter Pick up 1-min questionnaire.
Equation of State and Unruh temperature
AHMEDABAD INSTITUTE OF TECHNOLOGY
Introduction To Thermodynamics
Aims of Statistical Mechanics
Entropy and Thermodynamic 2nd laws : New Perspective
Quantum mechanics from classical statistics
Entropy change in an irreversible process
Quantum Physics Comes of Age I incident II transmitted reflected.
Entropy (S) a measure of disorder
Thermodynamics & Gibbs Paradox
Double Slit Experiment
ENTROPY SEM 3RD.
1.
More Discussion of the The 1st Law of Thermodynamics.
MESO/MACROSCOPIC TESTS OF QM: MOTIVATION
Quantum computation with classical bits
Chapter 1: Statistical Basis of Thermodynamics
What is Thermo, Stat Mech, etc.?
An Introduction to Quantum Mechanics through Random Walks
Total Energy is Conserved.
Engineering Thermodynamics
The Grand Canonical Ensemble
Presentation transcript:

Paradoxes of quantum and statistical mechanics. Dr. Kupervasser Oleg

Истечение газа из сопла. Показаны, в увеличенном размере, на самом деле невидимые невооруженным глазом молекулы газа.

Пример неустойчивости

Contradiction between second law of thermodynamics and reversible laws of classical physics. Second law of thermodynamics: Macroscopic Entropy (Coarsened Microscopic entropy) of closed isolated system can only increases and achieves its maximum in thermodynamics equilibrium state. Microscopic entropy is always constant in classical physics but Macroscopic Entropy can increases and also decreases. Poincare’s Paradox Zermelo’s Paradox

Four main components of full system. Observed system (microscopic, mesoscopic or macroscopic) Surround medium Observer + memory

Macroscopic entropy increasing paradox resolution. Definition of time arrow in Macroscopic entropy increasing direction. For observed system: Synchronization of time arrow of observed system with time arrow of surround memory and observer time arrow is a result of small uncontrolled interaction and instability of decreasing entropy processes. For a full system: impossibility of self- observation (impossibility of self-observation of returns). Memory erasing during returns.

Две причины, приводящие к несоответствию реальных законов движения законам классической и квантовой динамики. Это внешний шум и погрешность начальных условий. Эти факторы приводят к разрешению парадоксов в квантовой механике и классической статистической физике. Они объясняют отклонение от законов идеальной динамики в этих парадоксах.

. Состояние с противоположными стрелами времени у двух подсистем неустойчиво. Малое взаимодействие между системами приводит к синхронизации стрел времени. Поэтому всюду во Вселенной стрелы времени сонаправлены. Положительное направление стрелы времени идет в направлении роста энтропии. Поэтому энтропия повсюду во Вселенной только растет.

Возврат системы к исходному состоянию из-за корреляций. Этот возврат не может быть зафиксирован при самонаблюдении из-за стирания памяти.

Разлетающиеся электрон и позитрон в ЭПР парадоксе.

Схема интерференционного опыта Юнга.

Дифракция электронов на двух щелях.

Мячики, пролетающие сквозь щель в заборе, оставляют на стене следы в виде двух полос — «изображения» щелей. Так же вел бы себя и свет, будь он просто потоком частиц.

Contradiction between reduction of wave function and Schrodinger law (Unitary evolution) of quantum mechanics. Microscopic entropy is constant under Schrodinger law but increases under reduction. Schrodinger cat paradox as illustration of wave function reduction paradox.

Опыт со Шредингеровским Котом с точки зрения внешнего наблюдателя и с точки зрения самого Кота (самонаблюдение)

Пример квантовой суперпозиции макросостояний.

Four main components of full system. Observed system (microscopic, mesoscopic or macroscopic) Surround medium Observer + memory

Schrodinger cat paradox resolution. For a observed system: reduction happens because of non closed character of system: 1)small uncontrolled interaction with surround medium (decoherence process) 2)necessary for measurement interaction with observer For a full system: reduction happens because of impossibility of self-observation (self- observation of returns). Memory erasing during returns.

Возврат системы к исходному состоянию из-за квантовых корреляций между «Мирами» в Многомировой интерпретации. Этот возврат не может быть зафиксирован при самонаблюдении из-за стирания памяти.

Прямой и обратный процессы

Analogy between quantum (QM) and classical mechanics (CM). Similarity in paradoxes resolution Analogy between reduction process and “molecular chaos hypothesis” (MCH) F(x1,x2)=F(x1)*F(x2): 1) Nondiagonal elements of density matrix in QM and correlations in CM dissapearing 2) Entropy increasing Main Difference between QM and CM: It is not probabilistic character of QM. Observation in QM is impossible without some small interaction even for macroscopic system. In CM it is possible. Definition of same uncontrolled small interaction in CM make this difference unimportant. CM in this case is also probabilistic.

Real and ideal dynamics. Impossibility of full description for observed and full system. Microscopic and macroscopic variables and master equations (obtained by reduction or MCH): Real and ideal dynamics Unfalsifiability (in Karl Popper’s sense) of difference between Real and ideal dynamics for full system Practical Unfalsifiability of difference between Real and ideal dynamics for observed system

Unpredictable dynamics. Quantum computers as example of Unpredictable dynamics for external observer which doesn’t know initial state. Mesoscopic isolated systems Mesoscopic Classical systems with returns as analogy of Quantum computers. Mesoscopic fluctuations. Open Living systems as example of Unpredictable dynamics. Very unstable correlation inside of organism and with outside world in CM (or nondiagonal terms of density matrix in QM) conserved by metabolism processes. Phase transition (bifurcation points)

Схема квантового компьютера