Simulation of femtosecond laser ablation of gold into water Povarnitsyn M.E. 1, Itina T.E. 2, Levashov P.R. 1, Khishchenko K.V. 1 1 JIHT RAS, Moscow, Russia.

Slides:



Advertisements
Similar presentations
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Advertisements

1 Monoenergetic proton radiography of laser-plasma interactions and capsule implosions 2.7 mm 15-MeV proton backlighter (imploded D 3 He-filled capsule)
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
SENIGALLIA-COULOMB09 1 Protons Acceleration with Laser: influence of pulse duration M. Carrié and E. Lefebvre CEA, DAM, DIF, Arpajon, France A. Flacco.
LCLS Atomic Physics with Intense X-rays at LCLS Philip H. Bucksbaum, University of Michigan, Ann Arbor, MI Roger Falcone, University of California, Berkeley,
Charged-particle acceleration in PW laser-plasma interaction
Femtosecond laser ablation dynamics in wide band gap crystals. N.Fedorov CEA/DSM/IRAMIS École Polytechnique.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
Nanopatterning of Silicon Carbide by UV and Visible Lasers. By Arvind Battula 12/02/2004.
Generation of short pulses
K-Shell Spectroscopy of Au Plasma Generated with a Short Pulse Laser Calvin Zulick [1], Franklin Dollar [1], Hui Chen [2], Katerina Falk [3], Andy Hazi.
Update on LLNL FI activities on the Titan Laser A.J.Mackinnon Feb 28, 2007 Fusion Science Center Meeting Chicago.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Valencia Bernd Hüttner Folie 1 New Physics on the Femtosecond Time Scale Bernd Hüttner CphysFInstP DLR Stuttgart.
Ultrafast Experiments Hangwen Guo Solid State II Department of Physics & Astronomy, The University of Tennessee.
Kinetic coefficients of metals ablated under the action of femtosecond laser pulses. Yu.V. Petrov*, N.A. Inogamov*, K.P. Migdal** * Landau Institute for.
СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО- ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ Институт теплофизики экстремальных состояний РАН, Москва, Россия Хищенко.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Great feeling Walking Ifen without machines Sunday Jan 26, 2007.
1 Multiphase code development for simulation of PHELIX experiments M.E. Povarnitsyn, N.E. Andreev, O.F. Kostenko, K.V. Khischenko and P.R. Levashov Joint.
Investigation of fluid- fluid phase transition of hydrogen under high pressure and high temperature 2014/11/26 Shimizu laboratory SHO Kawaguchi.
ELASTIC-PLASTIC PHENOMENA AND PROPAGATION OF STRONG SHOCK WAVES UNDER THE ACTION OF FEMTOSECOND LASER PULSES N.A.Inogamov, V.A. Khokhlov L.D.Landau ITP.
Photo-induced Multi-Mode Coherent Acoustic Phonons in the Metallic Nanoprisms Po-Tse Tai 1, Pyng Yu 2, Yong-Gang Wang 2 and Jau Tang* 2, 3 1 Chung-Shan.
1 Gas-Filled Capillary Discharge Waveguides Simon Hooker, Tony Gonsalves & Tom Rowlands-Rees Collaborations Alpha-X Basic Technology programme (Dino Jaroszynski.
Attosecond Light and Science at the Time-scale of the Electron –
Vibrational Relaxation of CH 2 ClI in Cold Argon Amber Jain Sibert Group 1.
M. Povarnitsyn*, K. Khishchenko, P. Levashov
The physical mechanisms of short-pulse laser ablation D. Von der Linde, K. Sokolowski-Tinten A summary report by Ryan Newson June 25, 2004.
M. Zamfirescu, M. Ulmeanu, F. Jipa, O. Cretu, A. Moldovan, G. Epurescu, M. Dinescu, R. Dabu National Institute for Laser Plasma and Radiation Physics,
1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia.
Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, Exploring atomic fragmentation with COLTRIMS.
/15RRP HAPL Dec 6, Robert R. Peterson Los Alamos National Laboratory and University of Wisconsin Calculations of the Response of Inertial Fusion.
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Laser Treated Metallic Probes for Cancer Treatment in MRI Systems July 08, Advance Materials Processing and Analysis Center (AMPAC) Department of.
Multi-material simulation of laser-produced plasmas by Smoothed Particle Hydrodynamics A. Sunahara France /5-11. Institute.
Thermal evolution of an early magma ocean in interaction with the atmosphere T. Lebrun 1, H. Massol 1, E. Chassefière 1, A. Davaille 2, E. Marcq 3, P.
VARIOUS MECHANISMS OF ELECTRON HEATING AT THE IRRADIATION OF DENSE TARGETS BY A SUPER-INTENSE FEMTOSECOND LASER PULSE Krainov V.P. Moscow Institute of.
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Transition from periodic lattice to solid plasma in ultrashort pulse irradiation of metals Dimitri Fisher Soreq NRC Israel 25 th Hirschegg PHEDM Workshop.
Multiple-Cone Formation during the Femtosecond-Laser Pulse Propagation in Silica Kenichi Ishikawa *, Hiroshi Kumagai, and Katsumi Midorikawa Laser Technology.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
1. Fast ignition by hydrodynamic flow
Hydrodynamic Instabilities in Laser Plasmas Cris W. Barnes P-24 July 3, 2002.
MD (here)MD*EXP (kcal/mole)  (D) D (cm/s) 298K ENHANCED H ION TRANSPORT AND HYDRONIUM ION FORMATION T. S. Mahadevan.
Enhancing thermal conductivity of fluids with
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Two –Temperature Model (Chap 7.1.3)
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
1 ON THE MODELING OF DOUBLE PULSE LASER ABLATION OF METALS M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures, RAS, Moscow,
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
GRK-1203 Workshop Oelde Watching a laser pulse at work
Time-Resolved X-ray Absorption Spectroscopy of Warm Dense Matter J.W. Lee 1,2,6, L.J. Bae 1,2, K. Engelhorn 3, B. Barbel 3, P. Heimann 4, Y. Ping 5, A.
Wide-range Multiphase Equations of State and Radiative Opacity of Substances at High Energy Densities Konstantin V. Khishchenko, Nikolay Yu. Orlov Joint.
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
GRK1203 workshop, Oelde, Febr 2008 GRK1203 workshop on laser plasma physics and magnetic plasma confinement Laser.
Contents: Computer Code
Lecture 18: Ultrashort Laser Pulse Heating of Nanoparticles in Femtosecond, Picosecond and Nanosecond Modes Content: Introduction Comparison of Theoretical.
New concept of light ion acceleration from low-density target
Studies of the energy transfer
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Control of laser wakefield amplitude in capillary tubes
Lecture 14: RF Optics of Nanoparticles
A NEW SELF-ORGANIZATION ANODE PATTERN OBSERVED IN ATMOSPHERIC DC GLOWS
Research Co-ordination Meeting of the IAEA CRP on “Elements of power
Masoud Aryanpour & Varun Rai
M. Povarnitsyn, K. Khishchenko, P. Levashov
Nanoparticles for enhancing the effectiveness of proton therapy
Presentation transcript:

Simulation of femtosecond laser ablation of gold into water Povarnitsyn M.E. 1, Itina T.E. 2, Levashov P.R. 1, Khishchenko K.V. 1 1 JIHT RAS, Moscow, Russia 2 LabHC, St-Etienne, France XXVIII International Conference on Interaction of Intense Energy Fluxes with Matter March 2-7, 2013, Elbrus, Kabardino-Balkaria, Russia

Motivation Povarnitsyn et al.Simulation of femtosecond…March 2, 2013 Application of NPs – cancer and antibacterial treatment, imaging, censors, etc. H20H20 Au laser

Size distribution of NPs Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

Problem definition H20H20 Au laser H2OH2OAu z = 800 nm,  = 200 fs I  W/cm 2 Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

Two-temperature hydrodynamic model Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

Eidmann et al. PRE 62 (2000) Pump-probe for cold Elsayed et al. PRL 58, 1212 (1987)Cu Groeneveld et al. PRL 64, 784 (1990)Ag Schoenlein et al. PRL 58, 1680 (1987)Au Collision frequency Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

Thermal conductivity and electron-ion coupling Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

Laser energy absorption Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

Phase diagram of Au (EOS) a – 0 GPa b – -1 GPa c – -4 GPa d – -7 GPa Povarnitsyn et al.Simulation of femtosecond…March 2, 2013 GES library version 1.0.7: #23004 (two-temperature, multi-phase)

Water Hugoniot curve (EOS) Povarnitsyn et al.Simulation of femtosecond…March 2, 2013 GES library version #02250 (single-phase, caloric)

Two-temperature one-fluid hydrodynamics Laser absorption (Helmholtz equation for S or P polarization) Electron thermal conductivity Electron-ion collisions and energy exchange Two-temperature equation of state Several materials Model summary Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

Main stages of fs ablation H20H20 Au laser H2OH2OAu z = 800 nm,  = 200 fs Au H2OH2O H2OH2O SW Au H2OH2O 1) 2) 3) 4) T e >> T i Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

I 0 =2×10 13 W/cm 2 (F abs = J/cm 2 ) Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

I 0 =3×10 13 W/cm 2 (F abs = 0.26 J/cm 2 ) Povarnitsyn et al.Simulation of femtosecond…March 2, 2013 r  10 – 100 nm

I 0 =4×10 13 W/cm 2 (F abs = 0.55 J/cm 2 ) Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

I 0 =5×10 13 W/cm 2 (F abs = 0.95 J/cm 2 ) Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

I 0 =5×10 13 W/cm 2 (F abs = 0.95 J/cm 2 )  Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

The large-size particles are the result of liquid layer ejection and fragmentation The near-critical and supercritical trajectories appear for front target layers and the mass fraction of the liquid–gas mixture increases Formation of small NPs can be observed for these trajectories and estimation of the NP size matches quite well with the experimental findings The calculation results explain bimodal size distributions of NPs frequently observed in experiment Summary Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

[1] M.E. Povarnitsyn, N.E. Andreev, E.M. Apfelbaum, T.E. Itina, K.V. Khishchenko, O.F. Kostenko, P.R. Levashov and M.E. Veysman. A wide- range model for simulation of pump-probe experiments with metals. // Applied Surface Science. 258, 9480 (2012). [2] M. E. Povarnitsyn, N. E. Andreev, P. R. Levashov, K. V. Khishchenko, and O. N. Rosmej. Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams // Phys. Plasmas. 19, (2012). [3] M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, K. V. Khishchenko. Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment // Phys. Chem. Chem. Phys. 15, 3108 (2013). Publications Povarnitsyn et al.Simulation of femtosecond…March 2, 2013

Purpose: Expert system for simulation of laser experiments Principles open user-friendly Tools wide-range physical models simulation module user web interface visualization Benefits experiment cost reduction interpretation of experimental findings education Virtual Laser Laboratory Povarnitsyn et al.Simulation of femtosecond…March 2, 2013 Concept of Virtual Laser Laboratory