A novel gamma-ray detector with sub-millimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG scintillators Takuya Kato J.Kataoka,

Slides:



Advertisements
Similar presentations
1 Continuous Scintillator Slab with Microchannel Plate PMT for PET Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat 2, Fukun Tang 2,
Advertisements

PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
Observation of Fast Scintillation of Cryogenic PbI 2 with VLPCs William W. Moses, 1* W.- Seng Choong, 1 Stephen E. Derenzo, 1 Alan D. Bross, 2 Robert Dysert,
1 A Design of PET detector using Microchannel Plate PMT with Transmission Line Readout Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat.
PID Nagoya univ1 The possibility of improving TOP counter Nagoya university Yuji Enari.
Performance Evaluation of SiPM Arrays under Strong Magnetic Fields
Qualification Test of a MPPC-based PET Module for Future MRI-PET Scanners Yohta KUREI J.Kataoka, T.Kato, T.Fujita, H.Funamoto, T.Tsujikawa (Waseda Univ.)
■ TOF-PET Imaging t1 t2  d = c x  t /2 When  t = 300 ps ➔  d = 4.5 cm Timing resolution required for MPPC Timing resolution required for MPPC ≤ 200.
Introduction on SiPM devices
Photon detection Visible or near-visible wavelengths
Absolute light output determination of crystal scintillators
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
MPPC R&D status Kobe Univ. CALICE collaboration meeting Yuji SUDO Univ. of Tsukuba ~ contents ~ Introduction Linearity curve Recovery time.
1 Performance of multi-anode PMT employing an ultra bi-alkali photo-cathode and rugged dynodes Takahiro Toizumi Tokyo Institute of Technology S. Inagwa.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
SiPM: Development and Applications
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
Development of a gamma-ray imager using a large area monolithic 4x4 MPPC array for a future PET scanner Takeshi Nakamori T. Kato, J. Kataoka, T. Miura,
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
Optimization of Detectors for Time of Flight PET Marek Moszyński, Tomasz Szczęśniak, Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland.
Timing properties of MCP-PMT K.Inami (Nagoya university, Japan) - Time resolution - Lifetime - Rate dependence Photon Detector Workshop at Kobe,
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
Proposal to Test Improved Radiation Tolerant Silicon Photomultipliers F. Barbosa, J. McKisson, J. McKisson, Y. Qiang, E. Smith, D. Weisenberger, C. Zorn.
Development of a Gamma Camera Based on an 88 Array of LaBr3(Ce) Scintillator Pixels Coupled to a 64-channel Multi-anode PMT Hidetoshi Kubo, K.Hattori,
Seoul National University Functional & Molecular Imaging System Lab Progress in Nuclear Imaging Mikiko Ito, PhD Dept. of Nuclear Medicine, Seoul National.
MPPC status M.Taguchi(kyoto) T2K ND /7/7.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
Development of Multi-Pixel Photon Counters and readout electronics Makoto Taguchi High Energy Group.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
28 June 2007G. Pauletta: ALCPG Tests of IRST SiPMs G. Pauletta Univ. & I.N.F.N. Udine Outline 1.IRST SiPMs : baseline characteristics 2.first application.
1 CPTA Center for Prospective Technologies & Aparatus ©2009 – Photonique SA (DMC) APD-Pixel Photo-Diodes for Frontier Detector Systems - GSI Darmstadt.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
Scintillators suitable for PET applications must be characterized by a high efficiency for gamma-ray detection, determined by a high density and atomic.
Peter Dendooven LaBr 3 and LYSO monolithic crystals coupled to photosensor arrays for TOF-PET Physics for Health in Europe Workshop February 2-4, 2010,
Development of large-area reverse-type APD arrays
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
Beam Profile Monitor for Spot-Scanning System Yoshimasa YUASA.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
SiPM Workshop EU-FP7(HP3), Vienna, 16 Feb F.G. H.O. Study of scintillator detectors time resolution with different SiPM readout on T10 test beam.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
D. Renker, PSI G-APD Workshop GSI, PAUL SCHERRER INSTITUT Problems in the Development of Geiger- mode Avalanche Photodiodes Dieter Renker Paul Scherrer.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
Development of Multi-Pixel Photon Counters (1)
Performance of scintillation pixel detectors with MPPC read-out and digital signal processing Mihael Makek with D. Bosnar, V. Gačić, L. Pavelić, P. Šenjug.
Fast SiPM readout for PET
Development of a High Precision Axial 3-D PET for Brain Imaging
Application of Nuclear Physics
X. Zhu1, 3, Z. Deng1, 3, A. Lan2, X. Sun2, Y. Liu1, 3, Y. Shao2
3x3-MPPC-SMDx16ch SiPM tileable modules from Hamamatsu
一种基于晶体间光分享原理的深度测量PET探测器
T2Kロシアグループに向けたMPPC(SiPM)の性能評価
R&D of MPPC in kyoto M.taguchi.
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

A novel gamma-ray detector with sub-millimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG scintillators Takuya Kato J.Kataoka, T.Nakamori, T.Miura, H.Matsuda A.Kishimoto (Waseda Univ.) K.Sato, Y.Ishikawa, K.Yamamura, S,Nakamura N.Kawabata (Hamamatsu) H.Ikeda (ISAS/JAXA) S.Yamamoto (KCCT) K.Kamada (Furukawa Co., Ltd.) 8 December th Hiroshima Academia Sinica, Taipei

Contents 2 1.PET and our approach 2.Performances of the MPPC array 3.Charge division readout technique 4.Sub-millimeter pixelized scintillators 5.Future prospects and summary

Positron Emission Tomography 3 ⇒ Well-established method for detecting cancers PMT is incorporated in conventional PET scanner However, PMT is … PMT Scintillator intricate in construction large size sensitive to B fields APD can overcome these points Functional imaging with 511keV annihilation gamma-ray Time of Flight(ToF) and Depth of Interaction(DoI) information improve image quality ToF DoI MRI-PET has become common as a multimodality imaging device ⇒ compactness, low power and ⇒ insensitivity to B fields is required high time resolution are required Cancer

APD-PET project 4 Kataoka, Matsuda et al. 2009, NIM-A, 2010 IEEE-TNS Koizumi et al. 2009, Yoshino et al. 2011, NIM -A 256ch APD-array APD is a compact and insensitive to B fields Developed large size APD and dedicated LSI Sub-millimeter resolution was achived Time resolution is a few ns 3.1ns (FWHM) ⇒ unfavorable for ToF APD gain is relatively low (~50) ⇒ easily affected by electric noise contamination

Multi-Pixel Photon Counter 5 2D-array of Geiger mode APD pixels charges proportional to the number of fired pixels compact low bias voltage (<100V) high gain (10 5 ~10 6 ) insensitive to B fields quenching resistor Geiger-mode APD Geiger -mode quenching discharge charge V I V op V br ON Off ~50ns

Characteristics summary 6 High gain, doesn’t need CSA Less photon-detection efficiency Narrow dynamic range due to limited number of pixels ⇒ much better S/N ⇒ much better time resolution (suitable for ToF-PET) ⇒ worse energy resolution ⇒ need linearity correction PMT APD MPPCPD gain Q.E. (PDE) volume interfered by B structure power consumption 10 5~6 >25 large yes complex high ~6 >80>25 small no simple low suitable for PET

4 × 4 Monolithic MPPC array 7  4×4 array with 3×3mm 2 pixel  50μm type (3600 APDs/pixel)  0.2mm gap  With FPC(flexible printed circuit)  monolithic  buttable  low dark counts rate 20deg) 13.6mm Gain vs Voltage Gain 20deg ±5.6% averaged gain = 7.5 × 10 5 Bias Voltage [V] Gain (×10 5 )

Performance with Ce:LYSO 8  4×4 array of 3×3×10mm 3 crystals  reflective BaSO 4 layer divide pixels  coupled using optical grease  irradiated by V 137 Cs spectra energy resolution map 11.5±0.5% (FWHM) ρ =7.10 g/cm 3 25 ph/keV τ =40 ns LYSO array for 662keV Energy [keV] Counts

Time resolution of the MPPC array 9 CFD TAC delay start stop PHADC  PMT  3×3×10mm 3 Ce:LYSO crystal reference detector LYSO PMT MPPC array 22 Na 493±22ps (FWHM) time resolution map

Charge division readout technique 10 resistor network Fan I/O 100ns delay CSADC ×10 linear amp Gate Generator gate (700ns) Discriminator 4ch analog sum ×16ch  often used for MAPMT  16 anodes are connected to red circles  interaction positions are calculated by centroid method  irradiated by V 137 Cs

Result of charge division readout 11 flood image X position (a.u.) Y position (a.u.) 137 Cs spectra  4×4 pixels are clearly resolved  averaged FWHM of peaks is 0.19mm  spectra are extracted from flood image  energy resolution is slightly better 10.2±0.4% (FWHM) for 662keV averaged FWHM of peaks Energy [keV] Counts

Sub-millimeter pixelized scintillator 12 12×12 array 1.0×1.0×10mm 3 17×17 array 0.7×0.7×10mm 3 22×22 array 0.5×0.5×10mm 3 Ce:LYSOCe:GGAG  Ce:GGAG is a brand-new scintillator which has very large light yield  0.1mm thick BaSO 4 layer  coupled with 1mm thick acrylic light guide  read out by resistor network ρ =6.63 g/cm 3 42 ph/keV τ =52.8 resistor network scintillator light guide MPPC array

Comparison between LYSO and GGAG 13 GGAG has larger light yield Decay time of LYSO is shorter ⇒ LYSO is suitable for ToF ⇒ GGAG has better energy resolution  3×3mm 2, 50μm type MPPC  3×3×10mm 3 scintillator crystals 7.9% (FWHM) 9.7% (FWHM) 137 Cs spectra Charge[pC] Normalized counts 3mm GGAGLYSO pulse shapes of 662keV photoelectric absorption events

1.0mm 2 Ce:LYSO array 14 flood image X position (a.u.) Y position (a.u.) 137 Cs spectra  irradiate by 137 Cs  side pixels are overlapped, but central 8×8 pixels are successfully resolved  energy spectra are extracted from flood image 11.5±0.9% (FWHM) for 662keV Energy [keV] Counts

0.7 and 0.5mm 2 arrays 15 flood images 0.7mm 2 Ce:LYSO 0.5mm 2 Ce:LYSO Ce:GGAG 0.5mm 2 Ce:GGAG 11.7±0.7% (FWHM) for 662keV 14.3±1.8% 12.0±1.3% X position (a.u.) Y position (a.u.)  irradiated by 137 Cs  side pixels are overlapped, but central pixels are successfully resolved  energy resolution of GGAG is better than that of LYSO

16 Future prospects Yamamoto et.a l. 2011, IEEE tweezers type coincidence imaging system Monolithic MPPC array with FPC cable Sub-millimeter pixelized scintillator ⇒ more compact ⇒ much better spatial resolution 22 Na Experimental coincidence measurements are conducted Simple 2-dimensional geometrical reconstruction is achieved ~1.3mm (FWHM) ⇒ ~1.3mm (FWHM) resolution

17 Summary MPPC with sub-millimeter scintillator could be promising for high spatial and time resolution gamma-ray imaging, particularly in PET scanner We developed 4×4 monolithic MPPC array Fine gain uniformity of ±5.6% and low dark count rates of ~400kcps were obtained We achieved resolving 0.5mm 2 pixelized scintillator in flood image Energy resolution was 10.2% Time resolution was 493ps (FWHM)

Appendix

About Ce:GGAG Kamada et al. 2011, Cryst Growth Des. Comparison with APD GGAG decay curve decay time 52.8ns (73%), 282ns (27%)

Performances of Hamamatsu MPPC Low dark count (e.g. 3x3mm2, 50um pixel) 10Mcps (2007) --> 5Mcps (2009) --> 1Mcps (2010 – best run) --> consolidate High time resolution (jitter) (e.g. 1x1mm, 1 p.e. level) aro 250ps (2009) --> Lower than 130ps (2010)

Linearity correction 1275keV of 22 Na 662keV of 137 Cs 511keV of 22 Na 356keV of 133 Ba 122keV of 57 Co

Comparison between MPPC and APD Time resolutons MPPC: 624ps(FWHM) APD: 5300ps(FWHM) CFD 100ns delay TAC MCA 22 Na CSA only when using APDs MPPC or APD

Time resolution of APD 155 ps (FWHM) for 10keV beam (=corresponding to the charge of 511keV when coupled with LYSO) CSA limits time resolution Kataoka et al. 2010, IEEE X-ray beam 1-2 ns width TAC

Setup for measuring gain MPP C array LED aluminum case Clock Generato r 100s delay Atten uator Gate Generator Fan I/O CSADC ×100 linear amp gate (100ns ) 465nm CSADC channel Counts LED light spectrum Q offset 1photon 2photon 3photo n

Dark count rates 0.5p.e. level

Gain vs time resolution

Detail about resistor network out1 out4 out3 out2 red : 51Ω blue : 100Ω … HV

Charges of 662keV photopeak 3mm 2 1mm 2 0.5mm 2 A D A D 0.7mm A D