Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.

Slides:



Advertisements
Similar presentations
Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
HIGH-RESOLUTION ANALYSIS OF VARIOUS PROPANE BANDS: MODELING OF TITAN'S INFRARED SPECTRUM J.-M. Flaud.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
60th OSU International Symposium on Molecular Spectroscopy TF03 The millimeter-wave rotational spectrum of lactic acid Zbigniew Kisiel, Ewa Białkowska-Jaworska,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Revisit vibrational Spectroscopy
65th OSU International Symposium on Molecular Spectroscopy RH14.
High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene: [1,6]-naphthyridine. Sébastien Gruet, Manuel Goubet, Olivier.
A. J. Minei College of Mount St. Vincent, Riverdale, NY S. A. Cooke Purchase College SUNY, Purchase, NY Pure Rotational Spectroscopy of Asymmetric Tops.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Fitting the high-resolution spectroscopic data for NCNCS Zbigniew Kisiel, a Brenda P. Winnewisser, b Manfred Winnewisser, b Frank C. De Lucia, b Dennis.
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
ROTATIONAL SPECTROSCOPY
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
64 th OSU International Symposium on Molecular Spectroscopy.
20 June st International Symposium on Molecular SpectroscopyPetkie – TG03-p1 The Millimeter and Submillimeter-wave Spectrum of the , 6 1.
Synchrotron-Based High Resolution Spectroscopy of N-Bearing PAHs Sébastien Gruet, Olivier Pirali, Manuel Goubet and P. Bréchignac ISMS /06/2014.
Spectroscopy of He-, Ne-, and Ar - C 2 D 2 complexes Mojtaba Rezaei, Nasser Moazzen-Ahmadi Department of Physics and Astronomy University of Calgary A.R.W.
66th OSU International symposium on molecular spectroscopy
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
70th ISMS Vibration-Rotation Analysis of the 13 CO 2 Asymmetric Stretch Fundamental Band in Ambient Air for the Physical Chemistry Teaching Laboratory.
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
The Millimeter- and Submillimeter-Wave Spectrum of Propenal A. M. DALY, C. BERMÚDEZ, L. KOLESNIKOVÁ, AND J. L. ALONSO Grupo de Espectroscopia Molecular.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
High resolution far-infrared spectra of thiophosgene with a synchrotron source: The 1, 5, 2 4 and bands A.R.W. McKellar National Research Council.
Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory Joel R. Schmitz and David A. Dolson Department of Chemistry.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
International Symposium on Molecular Spectroscopy, June 22-26, First high-resolution analysis of the ν 21 band of propane at cm -1 : Evidence.
June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b.
(Toho Univ. a, Univ. Toyama b ) Chiho Fujita a, Hiroyuki Ozeki a, and Kaori Kobayashi b 2015 Jun 22ndInternational Symposium on Molecular Spectroscopy,
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
SESAPS Terahertz Rotational Spectrum of the v5/2v9 Dyad of Nitric Acid * Paul Helminger, a Douglas T. Petkie, b Ivan Medvedev, b and Frank C. De.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Microwave Spectroscopy of the Excited Vibrational States of Methanol John Pearson, Adam Daly, Jet Propulsion Laboratory, California Institute of Technology,
ASSIGNING OF VIBRATION-ROTATION SPECTRA USING THE LWW PROGRAM PACKAGE
Department of Chemistry, University of Wisconsin, Madison
The Near-IR Spectrum of CH3D
Millimeter-wave spectroscopy of formyl azide (HC(O)N3)
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
The lowest vibrational states of urea from the rotational spectrum
Department of Chemistry, University of Wisconsin, Madison
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Millimeter-Wave Spectrum of Pyrimidine
Millimeter-Wave Spectroscopy of Phenyl Isocyanate
62nd OSU International Symposium on Molecular Spectroscopy WG10
High Resolution Infrared Spectroscopy of Linear Cluster Ions
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin June 18, 2014

Previous Work on HN 3 Kewley, R.; Sastry, K. V. L. N.; Winnewisser, M., Journal of Molecular Spectroscopy 1964, 12, Bendtsen, J.; Winnewisser, M., Chemical Physics Letters 1975, 33, Bendtsen, J.; Winnewisser, M., Chemical Physics 1979, 40, Herzberg, G.; Patat, F.; Verleger, H., Z. Elektrochem. Angew. Phys. Chem. 1935, 41, ’s 1960’s- 1970’s 1980’s- 1990’s Bendtsen, J.; Hegelund, F.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1986, 118, 12. Hegelund, F.; Bendtsen, J., Journal of Molecular Spectroscopy 1987, 124, Bendtsen, J.; Hegelund, F.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1988, 128, Bendtsen, J.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1991, 145, Bendtsen, J.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1992, 152, Bendtsen, J.; Guelachvili, G., Journal of Molecular Spectroscopy 1994, 165, Hansen, C. S.; Bendtsen, J.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1996, 175,

The Synthesis Dry Ice Trap To Spectrometer H 2 O or D 2 O NaN 3 or Na 15 NNN Access to: HNNN DNNN H 15 NNN / HNN 15 N D 15 NNN / DNN 15 N

Our Spectrometer ~ GHz range 20 mTorr sample Room temperature

CCSD(T)/ANO2 Structure Å ° ° Å Å a b

Predicted Spectra for HN 3 and DN 3 HN 3 DN 3 Our Range

K=2 K=0 K=3 K=4 K=5 K=6 K=7 K=1 R- Series Anatomy HN 3 J = 13  12

The Spectrum: Full Range GHz J = 14  13 J = 15  14 J = 13  12 J = 11  10 J = 12  11 J = 10  9

The Spectrum: Key Features HN 3 J = 13  12 H 15 NNN J = 13  12 HNN 15 N J = 13  12 K=1 K=0 Vibrationally excited modes  

The Spectrum: H 15 NNN K=0 K=2 K=3 K=4 K=5 H 15 NNN at natural isotopic abundance J = 13  12

Finding Naturally Occurring Center 15 N Loomis- Wood plots centered on H 14 N 3 lines were used to find corresponding HN 15 NN lines

The fit data: HN 3 Bendtsen and Winnewisser 1975 (MHz) Present Work (MHz) CCSD(T)/ANO2 (MHz) A (6.0) (46) B (50) (47)11989 C (50) (48)11737 DJDJ (35) (33) D JK (11) (21)0.904 DKDK [230][0]224 djdj (27) (54) dkdk [0]0.388(23)0.379 HJHJ (36) (13) H JK (86) (17) H KJ (35) (20) HKHK [0] L KKJ (55) Bendtsen, J.; Winnewisser, M., Chemical Physics Letters 1975, 33,

Summary of Isotopologues HNNNH 15 NNNHN 15 NNHNN 15 NH 15 N 15 NNH 15 NN 15 NHN 15 N 15 N A (MHz) (46) (68) (52) (89) (730) (332)? B (MHz) (47) (11) (21) (49) (83) (42)? C (MHz) (48) (11) (21) (49) (81) (41)? n ? DNNND 15 NNNDN 15 NNDNN 15 ND 15 N 15 NND 15 NN 15 NDN 15 N 15 N A (MHz) (24) (21) (51) (25) (18) (18) (32) B (MHz) (26) (31) (67) (31) (11) (13) (19) C (MHz) (27) (25) (67) (27) (12) (13) (18) n Cannot access H 15 N 15 N 15 N or D 15 N 15 N 15 N

R e Structure Determination Experimental constants were corrected for vibration- rotation interaction and electron mass. Using xrefit module in CFOUR: Fit 5 structural parameters to 39 moments of inertia (63) Å (14) Å (15) Å (64)° (19)° b a

Structure Comparison CCSD(T)/ANO2 (R e ) xrefit (R e )Substitution Structure (R s ) R 1 (Å) (15)1.159(50) R 2 (Å) (14)1.204(61) R 3 (Å) (63)1.017(12) A1A ° °(64)108.0°(21) A2A °171.14°(19)171.26°(57) R3R3 R2R2 R1R1 A1A1 A2A2

Excited Vibrational States HN 3 DN 3 Ground ν5ν5 ν6ν6 ν4ν4 2ν52ν5 2ν62ν6 ν 5 + ν 6 ν3ν3 0 cm cm cm cm cm -1 ~ cm -1 ~1213 cm -1 ~1074 cm cm -1 0 cm cm cm -1 ~991 cm -1 ~1082 cm cm cm -1 Ground ν5ν5 ν6ν6 ν4ν4 2ν52ν5 2ν62ν6 ν 5 + ν 6 ν3ν3 Coriolis perturbation Centrifugal distortion perturbation

Past IR Work -A large body of work analyzing each rotationally-resolved band in HN 3 and DN 3 IR spectra has been published. -Rotational constants and coupling terms from IR data has been published. -Published data does not adequately predict lines for vibrationally excited states in our millimeter-wave spectra. -The published data is still an outstanding starting point for our own analysis. Hegelund, F.; Bendtsen, J., Journal of Molecular Spectroscopy 1987, 124, Bendtsen, J.; Hegelund, F.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1988, 128, For our analysis of ν 5 and ν 6 the literature gives us starting points for the rotational constants and 3 separate Coriolis terms: Z a, η bc and Z b. Also provides very accurate energy separation between states. The published high-resolution rovibrational transitions allow us to calculate where the pure rotational transitions should be.

Finding HN 3 ν – ν 5 Ground Calculated from R- branch IR transitionsCalculated from P- branch IR transitions MHz MHz Error of cm -1 = 30 MHz

Initial Assignments of ν 5 and ν 6 Lines Calculated from P-branch IR transitions Calculated from R-branch IR transitions

Initial Assignments of ν 5 and ν 6 Lines Lines assigned based on rovibrational transitions

Fit for States ν 5 and ν 6 of HN 3 Actual Fit!

Combined fit for ν 5 and ν 6 of HN 3 ν5ν5 Present WorkHegelund et al A (2800)590240(19) B (30) (66) C (30) (66) ν6ν6 Present WorkHegelund et al A739181(3458)623487(19) B (271) (66) C (271) (66) Present WorkHegelund et al ZaZa (32)*10 6 [1.141*10 6 ] η bc 9.30 (19)9.65(24) ZbZb (30)1874.3(39) E[ ]

Combined fit for ν 5 and ν 6 of DN 3 ν5ν5 Present WorkHegelund et al 1987 A (17)327613(12) B (11) (57) C (97) (57) ν6ν6 CurrentHegelund et al 1987 A (14)361742(36) B (84) (57) C (66) (57) Present WorkHegelund et al 1987 ZaZa (42)[565409] η bc (12)4.80(90) ZbZb (79)2130(180) E[ ]

Summary and Ongoing Work Best structure of HN 3 to date (63) Å (14) Å (15) Å (64)° (19)° Find more lines, especially B-type lines to tighten up the fits. Accomplished: In Progress: Combined fits for Coriolis coupled ν 5 and ν 6 states. Investigate the complex coupling patterns of the higher energy vibrationally excited states.

Thanks for Listening! McMahon group + R.C. Woods